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Abstract 
Single-electronic systems are described by coupled sets of circuit equations which link the 
charge, voltage and current distributions of tunnelling and non-tunnelling capacitor arrays.The 
concept of critical charge is used to implement an efficient network solver. System simulation 
may then be achieved by Monte Carlo methods although this is often prohibitive 
computationally .Alternatively, linear programme techniques can establish the boundaries for 
stable operation. The full 3D modelling of the capacitance matrix is required for recently 
developed Schottky dot structures. 

I. Introduction 

The recent development of single-electronic devices has exploited the phenomenon of 
correlated single electron tunnellingfl] in coupled tunnel junctions(ultra-small capacitor arrays) 
under conditions set by the Coulomb blockade threshold e^/2C » kT. At least three different 
classes of structure are currently under study experimentally: vertical metal-insulator-metal[2-
4], lateral metal semiconductor metal[5]; and laterally patterned two-dimensional electron gases 
in semiconductor heterostructures[6]. These new devices pose new challlenges for 
computational electronics[7]: they are strongly capacitively coupled, the major transport 
mechanism is correlated tunnelling, the presence of thermal fluctuations, cross-talk, charge 
trapping de-trapping and macroscopic quantum tunnelling are all potentially killer effects. Most 
significandy existing single-electronic systems may be quite large (up to 100 devices) requiring 
new systems tools for design and analysis. 

II. Network solver 

We have developed a set of simulation tools based on a similar formalism to Bakhvalov et 
al[10] for a linear array of tunnel junctions but extended to arbitrary single electron tunnel 
junction circuit configurations using a matrix representation of the various voltages, currents 
and circuit elements. The general theory derives from an analysis of a basic tunnelling event 
and a single tunnel junction (capacitance C) in series with a non-tunnelling capactance Ce and a 

voltage source V(). The tunnelling rate T is determined by the temperature T and the free energy 

change following the tunnel event[l]: r(AE,T) = (AE/e2Rt)[exp(AE/kBT)-l }_1 where Rt is the 
junction tunnelresistance. At low temperatures 
T(AE)= (-AE/e2Rt) (AE<0); T(AE) = 0 (AE<0). (I) 
For the simple circuit we have: E = Qe2/(2Ce) + Qc2/(2C) + QvVo; where Qv is the charge 
through the voltage source and the critical charge Q c = e/(2[l+Ce/C]). For a single 
electrontunnel event we find 
AE = -eQ/C + e2/(2(C+Ce)) (2) 
This "instantaneous" model for tunnelling provides a first level for our system simulation tools. 
A second level utilises the quantum Langevin equation[ ] approach handle fluctuations (due to 
lack of space we do not describe that here). The critical charge is the charge at which tunnelling 
becomes advantageous; the critical charges for a circuit depend solely on the junction 
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capacitance and the lumped capacitance Ceff of the remaining circuit. We have developed a 
network solver for Ceff by deploying an impedance matrix Z, positive definite with rank equal 
to the number of loops in the circuit. The diagonal elements are the total impedances around 
each mesh; the off-diagonal terms are the total impedances shared by two loops. By 
partitioning this matrix we can separate out loops of no interest to obtain a lower rank effective 
impedance matrix Zeff. Hence we may determine the critical charges. 

III. Monte Carlo and Linear Programming simulators 

The Monte Carlo simulator uses the general network solverto find the critical charges for each 
device for which tunnelling becomes feasible in the tunnel junction network. The simulator then 
iterates "events" by repeatedly characterising the circuit for a given set of input voltages and 
clocked charge positions, discovering which tunnelling event will occur next and updating 
dependent and independent circuit parameters using charge conservation and the circuit matrix 
equations. Although this approach is important it is computationally expensive especially for 
the larger extended systems of coupled devices. 
To obtain a more rapid assessment of the possible stable operating regimes of single electronic 
devices and systems we have developed a linear programming technique which allows us to 
determine the allowed regime of stable operation in the control parameter space. The method is 
essentially an inverse of the Monte Carlo approach: the allowed or disallowed tunnel events are 
defined first followed by a detrmination of the circuit voltages and charge values. The approach 
is illustrated in figures 2-4 for a turnstile device[4] shown schematically in figure 1. The Monte 
Carlo results for the operational area of Vg-Va space (fig 4) are given by accumulating legal 
points. The area so-defined is found to be well-modelled by boundary lines determined from 
linear programming using the tunnel event schematics of figure 3. 

These new simulation tools have been used to study effects of cross-talk and inter array 
coupling in single-electronic systems. Figure 6 shows typical results of the effects of stray 
capacitance couplin Csn-ay o n t n e current through two parallel tunnel junction arrays shown in 
figure 5. 
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Figure 1. 2-phase turnstile device Figure2.Linear programming schematics 
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Figure 3. Legal area of turnstiling operation 
in VG, VA space .Dark shading = 
safe operation 
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Figure 4. Legal area of turnstiling operation 
in VG, VA space versus 
gate capacitance 
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Figure 5. Linked tunnel junction arrays 
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IV. Schottky dot systems 

The traditional approach to single-electronic devices has utilised the hanging-resist technology 
developed for metal-insulator-metal tunnel junctions[2]. Although this method has allowed 
construction of large numbers of interconnected junctions in complex circuits it is limited by the 
lithography to relatively large capacitances and consequently very low operating temperatures. 
Very recently a much finer resolution lithography which has fewer processing stages and 
involves forming ultra-fine ( < 5 nm radii and spacings) metal on semiconductor electrodes, 
Schottky islands and dot arrays has been developed at Glasgow[5](Fig 7).These new structures 
involve ultra-small capacitances with equivalent Coulomb blockade temperatures in excess of 
60K scaleable to much greater than room temperature. The dot structures may be arranged 
laterally to form pass transistors (fig8), RAM cells (fig9) or more complex circuits. An 
essential feature of these systems is the requirement for the "tunnelling tails" of the Schottky 
islands to overlap thus permitting correlated electron tunnelling from dot to dot via the 
semiconductor. Modelling of these systems is crucial in order to determine the effective 
capacitance matrix and for understanding how to control effects of unwanted traps (charge-
trapping de-trapping effects) which can destroy single electronic stability.by structuring the 
substrate, ground planes, doping levels and island geometry. 

The develpment of stable and reliable single electronic systems requires the precise design of 
both the junction capacitances (inter-capacitances) and the capacitances to ground. Since the 
measurement of such ultra-small capacitances is very difficult experimentally the design 
becomes reliant on the numerical simulation of the capacitance matrices. The problem is 
essentially a 3D problem involving complicated geometries, several dielectric regimes, and 
device physics which involves surface conditions, random distributions of traps and their 
dynamics. 

To illustrate part of the design problem and the importance of an adequate numerical solution 
we present here some results of 2D simulation of Aluminium wires on the surface of p-silicon 
as an approximation to the Schottky dot devices shown in Figures 7-9. The simulations were 
performed by the simulator H2F [8]. Figure 10 shows the potential distribution around two 
40 nm width wires with 12 nm spacing. The fringing effects and presence of the silicon 
substrate increased the junction capacitance 4 times in comparison with the simple parallel plate 
formula. The ground capacitance is more than twice as high as the junction capacitance. The 
presence of surface pinning states modifies the picture. The presence of donor type states near 
the middle of the bandgap increaes the ground capacitance slightly, but a more profound effect 
is produced by modelling acceptor states which significantly increae the capacitance(25%).The 
juction and ground capacitances may be tuned by anisotropic etching leaving metal islands on 
the top of silicon pedestals (figure 11 ). It is found that 200nm etching reduces the junction 
capacitance by a factor of 3x and the capacitance to ground is diminished by a factor of 2x. A 
parallelised 3D simulator is under development for for more realistic prediction and design of 
such devices[9]. 
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Figure 7. Schematic and equivalent circuit 
of Schottky dot arrays Figure9 Schottky dot RAM cell 
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Figure 10. Potential distribution around two Figure 11. Potential distribution around two 
Schottky dots on Si. Schottky pedestals on Si.VG =0.5V 
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