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Abstract 

A new, fast, two-dimensional model is presented that couples the classical semiconductor 
transport equations with quantum mechanics. It is particularly suited to the simulation of single 
channel, pseudomorphic and multi-channel HFETs and delta doped structures, where the 
primary conduction path between source and drain is via carriers confined to a two-dimensional 
potential well. The model solves Poisson's and the current-continuity equation self consistently 
with the effective mass Schrodinger equation, the latter taken in slices perpendicular to the 
heterojunction. Current flow is modelled by restricting the discretised "quantum" electrons to 
two-dimensional motion, neglecting non-equilibrium dynamics. The model improves on 
previously reported versions by allowing a full two-dimensional treatment of the Fermi-level, 
allowing a non-equilibrium treatment of Schrodinger's equation. 

Introduction 

The increasing use of AlGaAs/InGaAs/GaAs heterostructure devices has lead to great interest 
in modelling the electrons confined within 2 Dimensional Electron Gas (2DEG) layers. 
Classical schemes are based upon the electron wavefunction being described as Bloch states, 
which in turn are derived from flat band conditions. When events occur that approach the size 
of the electron wavepacket, ie. the de-Broglie wavelength, this approximation is invalid and 
quantum effects have to be included. Unfortunately a rigorous solution of the quantum 
mechanical equations becomes very involved and computationally intensive, limiting their use 
within physical device modelling. For this reason a simplified scheme has been adopted 
whereby quantum effects are modelled by solving the effective mass Schrodinger equation (1) 
across the heterojunction but assuming the classical approximations to hold elsewhere. 
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where 

V = - |b + VL + V (2) 
tot T h ' xc v / 

Vh is the heterojunction potential and V^the exchange-correlation energy [1]. This approach 
is justified as the smallest event in the x-direction is the gate which is at least an order of 
magnitude larger than the electron wavelength. The electron density is now described by 
equation (3), [2], instead of the classical Fermi-integral. 
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The model therefore solves Poisson's equation self-consistently with the classical charge 
transport equation, with the modification that the electrons are divided into two classes. The 
first posessing "quantised motion" are only permitted to move parallel to the heterojunction, 
and are formed from the electrons whose intersub-band separation is greater than the thermal 
energy, kBT. The second are normal three-dimensional electrons, which, in order to reduce the 
computational demands are approximated within the model by the Fermi-integral taken from 
a quasi-continuous conduction band edge shown in Figure 1. 
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Figure 1. Conduction band edge of a pseudomorphic AlGaAs/InGaAs/GaAs HFET showing 
the separation of the two- and three-dimensional electrons. 

Simulation Details 

The equations are discretised over a non-uniform rectangular mesh using central finite 
differences. Schrodinger's equation is solved, first by finding the eigenvalues via a bisection 
method based upon a "Sturm" sequence [3]. This method is both fast and robust, with the 
upper and lower bounds initially set using Gershgorin's theorem [4], and then updated using 
the last calculated eigenvalue. The eigenvalues are then substituted into Schrodinger's equation 
and eigenvectors found using a Newton iterative scheme. The current-continuity equation was 
formulated using current densities calculated at the half-nodes, assuming the independent 
variables ij; and <j> vary linearly in between the nodes. This has the advantage that no 
"Scharfetter-Gummel" interpolation scheme is necessary, substantially simplifying the device 
equations. 

The principle device equations are all highly non-linear in the independent variables <J>, ty. 
Consequently a modified Newton-Raphson iterative scheme was employed which requires the 
Jacobian, a matrix formed from the partial derivatives of the functions with respect to each of 
the variables. All of the terms in the two equations, with the exception of the partial derivative 
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of n2D with respect to \\> are readily differentiable. This term depends explicitly upon the partial 
derivatives of £k and Xk, which are calculated using perturbation theory, equation (4) 

ai|; 
= - l = o (4) 

using this result it is evident by inspection of equation (3) that 

d/z. d/j. 
(5) 

3i|r d$ 

Results 

The model has been used to simulate several devices including single channel, pseudomorphic 
and multichannel FETs. A typical pseudomorphic device structure is shown in Figure 2. The 
ohmic contacts are assumed to extend to the 2DEG and thus the modelled region is truncated 
placing the source and drain contacts at the sides. A lumped access resistance is then added 
explicitly. 
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Figure 2. A typical pseudomorphic HFET structure used in the simulations. 

Figures 3 and 4 show Fermi-level and conduction band edge profiles, taken at VDS = 1.7V and 
VGS = OV. The Fermi-level shows significant distortion around the gate, clearly perturbed from 
equilibrium, although in the InGaAs channel and GaAs substrate the gradient of the Fermi-
level (driving force) is nearly parallel to the heterojunction. The conduction band edge shows 
the two-dimensional potential well formed in the InGaAs. 
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Figure 3. Fermi-level for a pseudomorphic HFET. 

Figure 4. Conduction band edge for a pseudomorphic HFET. 

Figure 5 shows the IDS-VDS characteristics for this device, comparing quantum (solid lines) with 
classical Fermi-integral solutions, from which it is evident that the quantum simulation has a 
lower output current. This is mainly attributable to the reduced carrier density produced by this 
scheme, as current flow in the y-direction is mainly limited by the high access resistances to 
the 2DEG regions which are populated by three-dimensional electrons in both cases. 
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Figure 5. IDS-VDS curves for the quantum and classical simulations. 

Conclusions 

A two-dimensional HFET model incorporating quantum mechanics is presented that solves 
Schrodinger's equation in a more self-consistent fashion than has previously been reported. The 
quantisation in electron motion is explicitly taken into account, and found to have little effect 
in the final current-voltage curves. A significant reduction in current is observed between 
quantum and classical models, principally attributable to a lower free electron density. 
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