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Abstract This paper focuses on the discretisation of the hydrodynamic transport equations for 
electrons in sub-micron MOSFET structures. In particular initialisation of the electron 
temperature equation, and the important problem of accurately calculating the energy input 
term f J E j on a generalised triangular FE mesh will be considered. The discretisation is 
applied to the calculation of substrate leakage currents in sub-micron LDD MOSFETs, the 
results of which will be presented. 

I. Introduction 

As the size of active devices in VLSI sub-systems is continually reduced the validity of 
the standard drift-diffusion equations, as commonly applied to model semiconductor devices, is 
brought into question. The basic assumption made in the derivation of the drift-diffusion 
framework is that the charged carriers in a device are in thermal equilibrium with the lattice 
phonons at some ambient temperature. 

The kinetic Boltzmann transport equation is the starting point for describing a many-
particle carrier-phonon system, however, direct solution of this equation is a massive 
computational task and is therefore generally not attempted. A more practical approach is to use 
the first-five moments of the Boltzmann transport equation to provide an approximate solution 
which neglects the higher-order moments. These moment equations are commonly referred to as 
the hydrodynamic equations, which are basically conservation of charge, conservation of 
momentum (one in each of the three spatial dimensions) and the conservation of energy. This is 
an acceptable approximation provided there is sufficient randomisation of the thermal energy in 
the system to allow the meaningful use of average quantities such as velocity and effective carrier 
temperature. Under these conditions, the hydrodynamic equations, when used in the relaxation 
time limit, provide a practical engineering platform, which can be used to investigate hot-carrier 
effects such as velocity saturation and velocity overshoot 

This paper describes the discretisation of these equations using the Control Region 
Approximation. This method is general and is not restricted to a particular shape of element, 
however, we will assume the use of triangular elements. This has particular importance in the 
definition of the energy input into the energy moment equation. This will be discussed more fully 
in section 6. 
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II. Physical Equation System 

Application of the moment method to the Boltzmann Transport Equation produces a series of 
equations, one for each moment taken. The resulting steady state electron energy moment 
equation can be written as 

VSn-E-Jn + Rwn+n^^ = 0 (1) 
X 

wn 

here S„ is the energy flux vector, the second term describes the energy input into the system, and 
the last two terms describe energy loss in the system the first due to carriers recombining and the 
last due to inelastic collisions in the device. The average electron energy is described by wn, R is 
the recombination rate and x wn is the energy relaxation time. The energy flux term is described by 
the constitutive relationship 

Sn=Q„-^(wn + kTE) (2) 
q 

here Qn is a heat flux term which is identically zero under the symmetric Maxwellian assumption, 
however it is included heuristically here to account for the energy flow due to carrier thermal 
gradients. 

The conservation of carriers is described by the steady state continuity equations for electrons and 
holes 

Vjn~qR = 0 (3) 

V J ^ + ^ 0 (4) 

which again require the constitutive relationships for flux in this case current densities. For 
electrons the appropriate moment equation along with the assumption that the momentum 
relaxation time is very short compare to the energy relaxation time leads to 

J„ = -q±LnnVV + VnknVTE + ]lnkTEVn (5) 

where \in is the electron mobility, n is the electron concentration, \j/ is the electrostatic potential, k 
is the Boltzmann constant and TE is the effective electron temperature. Hole transport is assumed 
to be described by the standard Drift-Diffusion framework. 

Sp=-q\ippVy+\LpkTiyP (6) 

where TL is the ambient lattice temperature. Finally, Poisson's equation is solved for electrostatic 
potential 

V D - p = 0 (7) 
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where D is the electric flux vector given by 

D = eE = -eV\|/ (8) 

E is the dielectric constant for the material. Equations (1), (3), (4) and (7) along with the 
constitutive relationships (2), (5), (6) and (8) form a closed set of equations in the variables TE, n, 
p and \|/. Which can be discretised using the control region approximation. 

Ill Physical Models 

Mobility model 

At elevated electron temperatures carrier mobility is reduced by increased scattering rates this 
causes the carrier velocity to saturate. The electron temperature can now be used as a parameter 
in the electron mobility model. In effect it plays the same role as the electric field does in the 
standard drift-diffusion context. In this work an electron temperature dependent model is used 
which is consistent with the conventional field dependent model for mobility under homogeneous 
conditions, which has the form 

Vn(TE)=ll0\l + X _/L_JL__#_ii. (9) 

\i0 is the low-field mobility and A, is related to the electron saturation velocity v̂  and the energy 
relaxation time x by 

wn J 

i 3 Li 
x=2*r <10> s wn 

Impact lonisation Model 

In hydrodynamic simulations, non-local effects on carrier transport are of primary concern. 
Energy consideration in carrier transport plays a crucial role at this level of simulation. 
Accordingly, the suitability of using local field-dependent impact ionisation models in 
hydrodynamic simulations is not at all obvious. To alleviate this problem, the electric field 
dependence of the well-known Chynoweth's empirical formula for impact ionisation coefficient 
a„is replaced by an appropriate electron temperature dependence. This requires the establishment 
of a relationship between the electric field and electron temperature. For the homogeneous case, 
the energy equation (1) together with the mobility model (9) can be used to obtain such a 
relationship 

£ = 
. 2 TC-Ho 

Using the Chenoweth formula for an 

J2A2WL)|1+M(7Wi)['x 
(ii) 
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an = aexp 
' b^ (12) 

where a and b are empirical coefficients, one can model the non-local effects of impact ionisation 
through the non-local solution of electron temperature. 

IV Control Region Approximation 

The partial differential equations that make up the device model are all in the divergence form, 
that is they have the divergence of some flux vector quantity and a number of source terms. In 
general then they can be written 

V-F-S(r) = 0 

Over some local region of the device Q. performing a surface integral gives 

jj VFdQ-jj S(r)dn = 0 
a a 

\i 

jn-FdT-jj S(r)dn = 0 

(13) 

(14) 

where n is the outward normal unit vector and T is the boundary of the region. This is now in a 
form suitable for discretisation. Consider a typical node i in a triangular mesh as shown in Figure 

\ 
Figure 1. A control region Q (shaded area), of area A,, surrounding node i 

The region of integration Q becomes the Voronoi region (shaded) and the boundary T becomes 
the boundary of the Voronoi region. The line integral in (9) can now be approximated by a piece-
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wise summation of the flux across each of the edge segments. The integration of the source term 
is approximated by assuming a it to be constant at the value found at the actual node, thus 

EfyV-Sft (15) 

Aj is the Voronoi area associated with node i, M, is the number of edge connected to the node, 
and c^is the pipe width connecting the nodes along line if. So providing we can produce a 
suitable method of discretising the flux vectors along an edge we can apply (11) to all nodes in the 
mesh, the resulting set of non-linear equations can be solved using the Newton-Raphson method. 

V Discretised form of the Semiconductor Equations 

The set of divergence equations to solve are 

f X ^ H E - J n + ̂ n + n ^ ^ W o (16) 

A 
2>^v-*.-4-=o (17) 
;=i 

XV*,y+/?,4=0 (18) 
i=l 
Mi 

X^,y-P,A=0 (19) 
i=i 

The constituent relationships are readily discretised, for the first three equations the modified 
Scharfetter-Gummel method is used, and for the electric flux the standard finite-difference 
expression is used. The equations are assembled using the standard finite element approach on an 
element by element basis. The linear equations are solved using the Bi-CGSTAB method [1]. 

VI Discretisation of the Energy Source Term (E J„) 

This term provides energy input into the electron ensemble, and its proper discretisation is 
therefore essential. The difficulty in discretising this term arises from the inconsistencies of edge 
currents in a element When the electric field (E) is to be determined, a unique value for an 
element is readily found from the nodal potentials. This, however, this is not true for the current 
density field (Jn), since the Scharfetter-Gummel method used in the discretisation will only yield 
consistent edge currents when the current flow is purely one-dimensional. In order to resolve this 
problem several techniques have been suggested [2,3,4]. The first method of Laux is found to be 
extremely unstable, especially in the drain depletion region, where there are rapid changes in 
carrier concentration and the weighting method can yield a distribution of heating which is both 
erratic and unrealistic. The other two methods use completely different approaches to the 
discretisation of the (E • J„) term, nevertheless, the discretised forms are almost identical apart 
from small second order differences. These terms have significant effect on the stability of the 
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solution procedure, since they occur in off diagonal terms of the system Jacobian, and under some 
conditions destroy the diagonal dominance of the system. This means that unless an extremely 
small mesh spacing is used, which is unphysical and computationally expensive, then a solution 
cannot be found for drain bias values over a few volts. For this reason the power scheme [3] is 
preferred, as it does not present any apparent convergence problems. 

VII Solution algorithm 

Figure 2 shows a flow diagram of the solution algorithm. Initially a fully coupled drift-diffusion 
solution is sought which is then used to provide an initial guess for electron temperature. It also 
provides a good guess for the other solution variables. A decoupled scheme is then used to obtain 
a self consistent solution of the hydrodynamic equations. Typically the number of iterations 
required for self-consistency increase with an increase in electron temperature. 

(START) 

H BIAS 

PERFORM DRIFT-DIFFUSION 

SOLUTION AS INITIAL GUESS 

SOLVE ENERGY EQUATION FOR 

INITIAL ELECTRON TEMPERATURE 

SOLVE ELECTRON CONTINUITY 

AND MOHENTUM EQUATIONS 

SOLVE POISSSON 1 HOLE 

CONTINUITY EQUATIONS 

SOLVE ENERGY EQUATION FOR 

ELECTRON TEMPERATURE 

Figure 2. Algorithm for the solution of the hydrodynamic equations (16) - (19) 
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VII! Results 

The results of the hydrodynamic simulation are demonstrated for a LDD device structure, and 
validated against experimental data on a range of devices of differing gate lengths. Figure 3 
shows the electron concentration for a 5(J.m long channel device and the associated electron 
temperature. As expected the electron temperature is highest at the drain depletion edge, there is 
also a smaller amount of heating in the channel depletion region. Once the temperature 
distribution is established at a particular bias point the local impact ionisation rate can be 
calculated bas on the expression given in equations (11) and (12), from which the substrate 
current can be evaluated by summation across the device and weighting by the Voronoi area 

'«*.= X<WX f l.4 (20) 
all nodes 

where vs is the saturation velocity. Figure 4 shows the terminal currents for a 0.8(im length 
device, compared with experimental results for the same structure. In order to get such a good fit 
an energy relaxation time of 0.02ps has been used, and a saturation velocity of 9x l0 6 cm/s has 
been used. The agreement with these same parameters is equally as good for shorter gate lengths. 

IX Discussion 

In his paper we have presented a self-consistent model capable of solving the hydrodynamic 
equations in semiconductor devices. The equations have been discretised on a general mesh using 
the control region approximation, careful consideration has been paid to the discretisation of the 
heat source term. 

Results of the method have been demonstrated for an LDD MOSFET structure and found to give 
excellent agreement with measure drain and substrate currents. 
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Figure 3. (a) electron distribution VDS = 3.0V, VGS = 3JV 
(b) electron temperature VDS = 3.0V, VGS = 25V 
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Figure 4. Results from the hydrodynamic simulator 

(a) drain current - experimental^) and simulated (O) 
(b) substrate current - experimental^) and simulated (O) 
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