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Appendices

This tutorial approach is under-pinned by background theory in Appendices.

1.Representations and Pictures

Schrodinger, Heisenberg, Dirac(Interaction), Density Matrix
2. Time-dependent Perturbation Theory

Evolution operator, Time-ordering operator

3. Perturbation Theory at zero temperature

The S-matrix, Dyson Equation

4. Perturbation theory at Finite Temperature

Complex time domain, ordering in imaginary time, The S-matrix, Dyson Equation
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Appendices contd...

5. Non-Equilibrium Perturbation Theory

Choice of NEGF approach, The Problem of non equilibrium,
The Keldysh Time-ordered Green Function

The Keldysh Contour, The Keldysh Kadanoff Baym time contour
The Green Function Zoo, Identities

Time-independent case, GR and G,

Dyson equation of Motion on Keldysh Contour

Projection of equations of motion to real time

Langreth Rules

Equations of motion for no ISC stationary limit

6. Visualisation of flows
Velocity field, Vortices, vortices in atomistic devices, Trajectories and Experiment

7. Selected Applications of NEGF to nanodevices
The variability problem, interface roughness, Random dopant aggregation in source/drain
extensions, Combined NEGF DFT studies of silicon SiO2 interfaces
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Appendices contd...

8. Resonances in transmission
What to Expect
Previous Studies

NEGF versions

9. Selected personal references

Contact:

John.Barker@glasgow.ac.uk

Web site:  http:// johnreginaldbarker.co.uk
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1. Introduction

Source and Drain-Heavily doped n+ regions,atomistic effects
Plasmons, Image charge effects, electron correlations.....

Wrap-round Metal Gate
oxide

Source Drain P-type Silicon Channel
Laterally confined =>
sub-bands (size quantization)
Residual atomistic impurities
Non-bulk description

p-silicon nanowire channel

Wrap-round oxide Metal Gate

Surface interface roughness

Strong polar optical phonon scattering Plasmons

from surface Image charge effects
modes penetrate channel Further interface issues

Strong, inhomogeneous self-consistent electrostatic potentials
Electrons in channel see bulk and interface phonons.....
Huge computational Problem: lots of many=body physics!
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1.2 What is a Green Function?

Response at (r,t) after impulse at (r’, t’)

A

Retarded (causal Green
Function)

G(rt;r' t)

Response at time t and place r
to an impulse
at initial time t’ and place r’

Example a drop of water falls
into a bath of water

G(rt; r’ t’) =0 for t<t’

Antecedence Principle
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What is a Green Function?

Retarded
Green Function

Response after impulse
4
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Green function for classical diffusion

% _ pvig=0
ot

%g(x,t;xo,to) - DV g(X,1;X,1,) = 0(X =X, )O(t ~ 1)

1 ~ (x-x,)’ |

X,0,X,,l,)= ex
(L X0s0o) (4nD(t - 1,))*"” pl 4D(t-1,)

Inject a tagged particle at x,, t,

Probability density that it will
be found at x, t

is given by Green function
g( xt;X,t,)
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Green function for Schrodinger Equation: free particle

Evolution of complex Y(X,?)=<xly;t >
density field
in space and time

Effective Diffusion Coefficient B
(units: Length?/Time) D,=i—

Inject a particle at X, 7,
Probability amplitude that it will be found at X;,
is given by Green function G,(x,,?,,X,,t,)

where /’

9 Go(x,t,xo,to)-(ﬂ)szo(x,t,xo,to) = 5(x-x,)(t ~1,)
ot 2m

Impulse response  Impulse
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Quantum “Diffusion”: Green Function (retarded/causal)

| (x-X,)
G,(X,1,X,,t,) =——= exp[-——" It -t
(68 Xoo) (4nD(t - 1,))" Pl 4D(t—t0)] (=)
_ih
 om Real diffusion in complex time

Serious differences with ordinary diffusion
Quantum equation of motion and time evolution is time-reversible

Form of the diffusion operator depends on kinetic energy operator
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1.3 Simple formalism:Retarded Green Function GR

Things simplify if we treat stationary systems by Fourier transforming over time

Into energy space.

H=H,+V
. R !
inT> e s: 7?9 1)
it it

G (t,t") = (1/ih)exp[-iH(t—t")/ h]O(t-1t")
GRx,t;x't) =<xIG*(t,t") x>

G*(x,t;x't"=0 for (t-t")<0

~HG (t,t"Y=6(t-1")

GM(E)= f _Z dtG* (t,t"Yexp[iE(t —t") / hlexp[-n(t —t")]

G*(E)= [~ dt(%)exp[—th]exp[iE(t / hlexp[-nt]

limit n—0"
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Existence of a Self-Energy

Consider exact retarded Green Function

R . -1
G ={E+ im-H 0 V} |V describes phase-breaking scattering

R . -1
Go = {E + 11 — H 0} “Average” over scatterer degrees of freedom

<G*¥ >=G§+G§<VGR>

G* =G + GRVG*

A self-energy exists IF the second term factorizes as:

<VGF>=3"<G* >

<G*>={E+in-H,-Z*}"

Phase-breaking processes give rise to non-hermitian self-energy
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Advanced and Retarded Green Functions

GY={E+in-H,-3*}"';  G"={E-in-H, -3="}"
G" ={G"}" (hermitian conjugate) ==}

AR=2R+2A. FR=_2R-2A

2 21

From causality-see later- the eigenvalues of I'? must be positive.

The operator A R re-normalises the electron spectrum via level shifts

The operator " R describes the finite lifetime of the elecjfonic states
via level broadening. x

GE = \ 1 /

CE+(in+il®*)—(H, - A%
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The Spectral Density Function

The spectral density operator is defined by:

A= —L.{GR —GA}
2711

In the “free” case:

A= A= ({E+in-H}" ~{E-in-H,}"}
27T1

1 n
- —>SE-H
m(E-H)* +n’ ( 0)

In the “interacting” case
A=—L.<{{E+in—H0 -Vy'-{E-in-H,-V}'}>
2T
1

=<8E-H)>=——{{E+in-H,-2*}"' -{E-in-H,-X"}""}
I

27
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Density of States

The density of states

o(E)=Q" Trace[A]l= Q' Trace < S(E-H) >

Example: free electrons in 1D — use momentum representation

<plp'>=0(p-p'") (orthornormality) f _O:ol p><pl=1 (completeness)

AD 2

H%p—%diagonal A(p,p';E)=(5(E—p—) o(p-p")
2m 2m

n2
p(E)=Q" [~ dp"<p"0(E-L—) 8(p"- p) ~1/VE
% 2m




. John R Barker
Example: 2013 IWCE

Electron — Phonon scattering: simple 1D model

(e — &)
Im self-energy Y

F=aExp[— ]@[e—eo]

Construct
Re self-energy
from Dispersion Relation ||

Energy/phonon energy



Spectral Function (strong coupling) in momentum representation as E[k] varied JohnR Barker
) ; 2013 IWCE
From below optical phonon threshold to well above it.

A(E: EIK])=— 1+ L(E)

~0.1 0 sh _
T (E-Ek-AE) +m+D(E). 1~ fosmowup 0~ f

l , . . . u l
07F h
06 f ;
05F k
04F k
03F .
02 _
§ - LI\E_A -
0.0 ot ~—|—Jn P B e ]

—4 -2 0 2 4 6 8 10

Energy/Phonon energy
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Comparison of 1D-DOS for A exact and A=0

20—

1sf A=0 ' DOS unperturbed
; Approxn.
1af Non causal =

DOS perturbed

0.5

0.0

20—

Causal 2
i) Big differences
Up to 2 X Optical
Phonon Energy

0.5F

0.0
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2. The Schwinger-Keldysh-Kadanoff-Baym Formalis

J. Schwinger (1961)
L.V. Keldysh, (1964)
L.P. Kadanoff and G. Baym (1962).

Good Reviews

J. Rammer and H. Smith, Quantum field-
theoretical methods in the transport theory of
metals, Reviews of Modern Physics, 58, 323
(1986).

H. Haug and A. P. Jauho, Quantum kinetics in
transport and optics of semiconductors
(Springer, Heidelberg, 1996).

K. Balzer and M. Bonitz, Nonequilibrium
Green's Functions Approach to
Inhomogeneous Systems, Lecture Notes in
Physics 867 (Springer, 2013).

S. Datta, Electronic transport in mesoscopic
systems (Cambridge University Press,
Cambridge, 1995): introductory
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Hamiltonian

Many-body Hamiltonian operator

H=  H, + vV o+ U
Non-interacting Interactions External perturbations
carriers carrier-carrier applied fields
phonons carrier-impurity thermal gradients
lattice structure carrier-phonon
device architecture ........
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The One-Particle Green Function

Probability amplitude that a particle at r ,t, G(ry,t; 12, t)
is propagated tor,, t, in space-time.
r2, t2
Introduce electron annihilation and creation field operators
W *(x,) creates an electron at X,
W(x,) annihilates an electron at X, rl, t1
Anti — commutation relations
P * (X1)IP(X2) + lp(xz )IP * (X1) = {III * (Xl)alp(xz)} = 6(X1 = Xz)
2
Example Hamiltonian : G(X,,1;X,,t,)~<T W*_ (x,,t)¥,(X,,t,)>
/-
H = [dx{¥*(x) (=0 VIV +UOIP(x )} + What is the average?
<....>

1 % %k
# J %, [ X, PH )W (%) Vi (%1 = %)W () P (X))




4| University | College of Science

1

of Glasgow | & Engineering

2.1 Bird’s Eye View 1

1. The Schwinger-Keldysh-Kadanoff-Baym Non-Equilibrium Green Function formalism

Open many-body systems driven far out of equilibrium by applied forces.
It is technically difficult but only the essence is necessary to use it.

Miracle! S-K-K-B show that a non-equilibrium equivalent of zero temperature and

finite temperature quantum statistical mechanics can be established with exactly the same
structure in terms of double-time Green functions and self-energies (same Feynman diagrams).
In the case of one-particle Green functions we can establish a Dyson equation in terms of a
self-energy that contains all the interaction effects.

G(X,T;X',T')=GO(X,T;X',T')+ffdx”dx'”dt”dt”GO(X,T;X”,T”)Z(X”,T”;X”',r'”)G(X'”,T'”;X',T')

Im time axis
or: G=G,+G,2G

2. The price is high! < ——> Real time
axis

The variables T, T’ etc are defined on a contour
in the complex time plane.




1 University | College of Science
QfGlangW & Engineering

Bird’s Eye View 2

3. Continuation to the real time domain is difficult and leads to a zoo of Green functions.

4. For stationary systems we only need two Green functions from the zoo:

They are: GR(E) the retarded Green function,and G<(E) the “less than” Green function.

\d

Quantum states

Density of States Particle density and Current density

Local Density of States Generalised Wigner distribution
nx,E)=iG"(x,x;F)

JX.E)= —iﬂ(V—V')G<(X,X';E)|
2m

x=x'
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Bird’s Eye View 3

5. We only need two equations of motion (non-linear integro-differential equations)

Plus coupling self-consistently to Maxwell’s equations.

{E-H,-U-32"1G" =1

R A
G (E)=G"2°G
Generally GR is coupled to G< via the self-energy

6. Snag: huge open many-body system!
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Bird’s Eye View 4

7. Project the full system onto a finite “device” domain. Another Miracle!

Allow for coupling to environment at the device boundaries
by non-hermitian terms in the Hamiltonian: contact self-energies.

Just add to total self-energy:
< o

U(x,t) is just self-consistent electrostatic potential resulting from device architecture
and the non-equilibrium flow.

2— 2 +2

scattering contacts

8. For Ballistic transport: ignore >

scattering
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Bird’s Eye View 5

9. Include atomistic charges non-perturbatively to represent impurity scattering
since for less than ~1000 impurities in the device there is no self-averaging,
the Kohn-Luttinger ansatz fails (Barker(2007)and the self-energy is not valid!

incorporate into H,
10. Include surface roughness scattering non-perturbatively by varying interface profile.
incorporate into H,

11. For dissipative transport: evaluate self-energy X

) ) ) ) scattering
for scattering (elastic and inelastic)

This is the case for small nano-devices where if confinement ~ few nm
the density of states becomes quasi-1D (in sub-bands) and electron-phonon interactions
are enhanced. SNAGS: possible non-diagonality, complicated dependence on all the GFs.

)) = (G*,G"]

scattering ~ 2Scattering
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Adiabatic Switch-on and off of Interactions

H. .(t)=exp[-A|t]] H,.(O) ; A ->01

— e

Initial state Final state

time

Usual Perturbation Theory requires initial and final states to differ only in phase.
How do we eliminate reference to the state at infinity?
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Adiabatic Switch-on of Interactions

H..(t)= exp[-A|t]] H,(0) t<tO ; A ->0*; Hint(0)+U(t) t>t0

—

Schwinger-Keldysh

time

Initial //
and final state /

—
——

/
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The Keldysh time-ordered Green Function

Gx,T;x', t)==-i<T,Wx, D)W *(x",t")>=Tr[p(H, + V)T, W, (x,7)¥ *, (x',7")]A(

H=H,+V

Heisenberg representation : operators evolve under full Hamiltonian (H +U)

A, (t)=U"(t,t,))AU(t,t,)
T, : Keldysh contour time ordering, p

(use, fermion rules x(-1) per interchange)y

p(H)=exp[-p(H - uN)|/ Z

later Keldysh times 7,t' to the left.

This Green function has the same
perturbation theoretic structure as

zero temperature or finite temperature
Theory. Use Interaction picture.

In particular, G satisfies a Dyson equation.

Evolution operator-integral equation :

Why Time-ordered?

U(t,t0)=1—(i/h)f: dt'H, (t',1,)U (t',1,)

Iterating gives

Utt) =1+ (i/ny [, ["at,...[ " dt,H,(1,.1,)x
= 0 0 )

xH , (t,,8,)x...H, (1,,1,)
using time ordering operator T this becomes
U,t,)=1+

S (=ilhY :
+TE1 — dn todtz...ftodtpHH(tl,tO)HH(t2,t0)x...HH(tp,tO)
b !
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The Green Function defined on the Keldysh contour

Imaginary time

G(t,T’)

al time

!

T
Keldysh Contour
Turn on all interactions from t0

(start in equilibrium of H,)
Neglects initial state correlations, but includes

transients
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The Green Function Zoo:
distinguished by ordering on the Keldysh contour

Gx,7:x,t)=<xIG(z, ") Ix > -
=—ih< Ty, (X, 7)Y, (X,T) ——
J
!/ !/ !/ GT
=G, (X,7;X,T') t,t onupper contour
t t
@
. ) G~
=G (x,7;X,T") t onlower contour,
t' on upper contour
t t
=G (x,7;X,T') t onupper contour, * ) G<
t' on lower contour
! !/ ! t t’
= G..(X,T;X,T') t,t onlower contour
—— GT*
< Less Than; > Greater Than; T time-ordered, T* anti-time ordered
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Not all Non-Equilibrium Green Functions are independent

We choose initially then by observing the inter-relatiorlships

l

G, (x,7;X,T') t,t on upper contour

G (x,7;Xx,T") t onlower contour,
t' on upper contour
G (x,T;X,T") t on upper contour,

t' on lower contour

Only 3 independent
Green functions
typical choice:

Retarded G'=G,-G*
Advanced G* = G, -G

Lesser Than G-

G*< statistics
initial state

GR, GA dynamics
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Identities

G¥=G,-G* =G -G,.

Retarded Green Function

G (x,t;x',t") = -ih9(t-t") < {y(x,t),y (x',t")} >

Spectral Function

G'=G, -G =G* -G, A=G"-G"'=G" -G~

Advanced Green Function

G (x,t;x',t") = ihd(t'-t) < {yY(x,1), ¥ (x',t")} >




m
A
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3: Computational Procedure

Start from the Dyson equation on Keldysh contour

G=G,+G,2G
GXT:x'7'=G,(XT;X'T") +

fdxﬂdx!!!de,L,HfK d,ll,H|GO(X,L,,XH,L,H)Z(XHTH,XHITH')G(X!HT!H;X',L,!)

Transform to Real Times: complicated projection (see Appendices)
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3.1:Equations of Motion

Project the Dyson equation from Keldysh contour to real time :
Keep U explicitly as a perturbation here. Integrals over time and space implicit here.

G=G,+G,(U+2)G Dyson equation on Keldysh contour

G* =G +G,UG" +G,="G" ={G; "' -U-="}"

First Keldysh equation

G =G;+G, UG +GUG" +G, =G +G,=°G" + G:="G"

G =(1+G*"U+Z)G; {1+ U +=HG" )+ G =*G"

Vanishes in steady state, no ISCs  Second Keldysh equation
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3.2: Stationary case

The stationary case is determined by transforming to the time variables T,= (t-t’);
setting T,=(t+t’)/2 and setting time derivatives in d/dT, to zero. Finally introduce
energy-dependent NEGF by Fourier transforming over T,.

G*(x,x";E) = Thil() [ dT,expGET, / i) G*(x,x5T,,T5)
2

G"={G; '-Uu-z"}"!

Huge simplification
GY '={E+in-H,} IF self-energies
Are diagonal

G =G"ZG"

2

{E+h22v;—U(X)}GR(X,X';E)=5(X-X')+fdx" >*(x,x";E)G*(x",x"E)
m

2

{E+1 2'; ~Ux)}G(x,x"E) = f dx" 2°(x,x"; E)G*(x",x" E) + f dx" =¥ (x,x": E)G*(x",x"E)
- ?m
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GR and Gs

The Retarded Green Function GR  The Lesser than Green Function G<
Describes the Electronic States Describes the Occupancy of States

(DYNAMICS) (STATISTICS)
Confinement-sub bands et < _ ,~Re<,A
Applied field shifts G- =G"X>G

Resonances
Bound states
Lifetime of states

{E—Hy,—eqp—-3R}GR =1
0
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3.3:Projection from Open System to Finite Domain

Channel C
G . G, - 1
(E+im)l-Hg Age 0 Gg | Gy | Gy - 11010 -
A (E+inl-H, Agp G| Goe |G |=|1 O 1 |O
0 Ape (E+iml-H, || Gps| Gpe [Gpp | | 99 |1

Block Matrix Form
{(E+ml-H}Gg + Ay G- =0 (1st row—> 2nd column)

solve formally for Gg. =—{(E+in)l —HS}'IASCGCC C. Caroli R. Combescot

similarly, solve formally forG,.=-{(E+in)l-H,}"'A,.G.. | D.Lederer, P. Nozieres
and D. Saint-James, (1971).

substitute in
ArGe +{(E+iI-H . }G - + A )Gy =1 2ndrow—>2nd column)

gives closed equation for G,




m
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Projection from Open System to Finite System

Channel C

includes source,gate,regions

G. =[(E+in)-H.-X.]""  NEGF for Finite System

2C = ACSGOSSASC + ACDGDDOADC = 2Cs + 2CD

G'ss=[(E+in)-H"; G'op =[(E+in)-H,]"

“Coupling to
reservoirs

Executed by

Contact self-energy

Non-zero at interface

Contact Green Functions

Details depend on model

Numerics: use discrete matrices for G, H¢, 2.

NOTE:
Channel refers to the Simulation

Domain: it usually includes the
true source and drain regions
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Form of Green Function GR

| 2 d2 h2
G, ~{E+im+————-Ux)=-2.(x,x)}; t =
R L 2m dx’ ()= 2, ()5 2mdx’
- E+U+2+2t —t 0 0
5 ~t E+U+2+2¢ —t 0
0 —t E+U+2+2t —t
0 0 —t E+U+2+2t _

Simple tri-diagonal matrix provided self-energy is diagonal

Straightforward to handle.
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3.4:Methodology-Device modelling with NEGF Green function

Poisson equation electrostatics
= (Hartree) device architecture

V(Vp)=—q(n-p+N,-N,) density functional
Schwinger Keldysh Kadanoff Baym kinetic equations

H—H ;
£aé o+ 24 LH®) - HEODG (%, 6% ,0)
ot ot h
_ i 3.1 q.n
Dyson equation quantum = hfd xdty
[E _H- ZR ]GR _1 states zR (X,t;X”,t,,)G<(X”,t”;X,,tl) _ G< (X,t;X”,t”)ZA (X”,t”;X,,tl)}
| +% [dxrar
. . . local
Ke|dVSh klnet'IC equatlon non. OCa 2<(X,t;X”,t”)GA (X’,,t”;xl,t’) _ GR (X,I;X”,t")2<(X”,t”;X’,t’)}
carrier
- - + transient
G*=G"ZG" terms statistical ‘
dynamics Boltzmann transport equation
J
L done? (E-I- V.V+qE.Vp)f(x,p,t)
output ’ ’ ,
Jes current (I-V) = YL xPORE ) - £ (XPORP.P)}
D

capacitance (C-V)
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Device modelling with NEGF Green functions 2

Calculate
Electrostatic <
Potential ¢, START
Vag=p
Born-lteration l Calculate
Electrostatic
Calculate Self- | Calcu.late NEGF eqs. Elfactron . po.tent!al fr.om
: density, Current by using a Drift-Diffusion
energies recursive algorithm with Densit
(PHONONS) & ot y
from density 1 &
No

1 Yes

FINISH
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2D MOSFET simulation scheme

Svizhenko, M. P. Anantram, T. R. Govindan,
E S i E B. Biegel, and R. Venugopal (2002)

(E-—H)W =0 —(EI - Gr=§ <«— Kinetics

(EI G< =[=9G"

:> Statistics

GCL

\

in-scattering & out-scattering
Statistical mechanics

S
—
I
o
V
|

Hamiltonian of Device
Atomistic: DFT, Tight-binding, ...

Self-energies - Scattering rate

electron-phonon Breakthrough approach
@tit%/’/*
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Visualisation

Local Density of States LDOS

p(E:r) = - L ImG*(r,r 1 E) = A(r. E)

T
Carrier charge density
n(E;r)= —zlmGYr,r F)
T
Current density
J(E;r)= —eim*'1 . (V=-V"G (r,r';E)
47 rer
Velocity field
J(E;r)

v(E;r)= See Appendices

n(E;r)
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Quantum mechanical DOS (spectral function) data taken at Si-SiO2 interface

MOSFET sub-bands by Green Functions |

25nm MIT MOSFET 90nm MIT MOSFET
1
0.5
S o 3
> >
2 2
] ]
S -0.5 5 -
-1
1.5 : -1.
-10 0 10 20 30 40 50 60 0 50 100
Distance (nm) Distance (nm)

Striations in DOS plots are sub-bands. Spectral shift evident near source
barrier. Multiple sub-bands are required for accurate scattering calculations

First calculated by Jovanovich 2001
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Mode Space Decomposition

A J. R. Barker, M. Finch, J. Pepin and M.
Current flow , ,
In z-direction Laughton, Theory of non-linear transport in
quantum waveguides, Solid State Electronics
32, 1155 (1989).
v R. Venugopall, Z. Ren, S. Datta, M. S.

Lundstrom, and D. Jovanovic, Simulating
quantum transport in nanoscale transistors:

Real versus mode-space approaches, Journal of

Use NEGF_for each valley and mode Applied Physics, 92, 3730 (2002).
Get coupling between valleys/modes

Transverse motion is confined
Discrete modes: each 1D residual motion (z)

lo(1 a) a1 a v R
- —— [+ —— |+ V.(x,y,2) +ep(x,y,2,) { W' (x,y) = E;"W " (x, )
2 |ox\m dx) odx\m_ ox \ R

G*""(z,7"1E) Bare confinement potential, electrostatic potential

172

(E -E"" + in)l/2

v

2 )4
Gf’”’(z,z';E)~—ihm;{eXp[iKlz—z'I]; K=( e

h2

2

v = valley index

n = mode index Can be much faster but various caveats
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2D & 3D atomistic ballistic simulations

A. Martinez, J.R. Barker, A. Svizhenko, M.P. Anantram, M.
Bescond, A. Asenov, Ballistic Quantum Simulators for
: ey e Studying Variability in Nanotransistors, Journal of

fepe e ; o) . Computational and Theoretical Nanoscience, 5, 2289 (2008)

2D and 3D device simulation
Self-Consistent Poisson-NEGF

Volume discretization
3D variable space mesh

Parallelized Recursive techniques

x(nm)

Includes precision description of
rough interfaces and atomistic dopants

4 nm channel: non-perturbatively

Potential Distribution

Tight binding band structure

confined Silicon nanowire devices
4 nm channel:

Meandering current
flow
3D contours of jz

Unique dielectric assignment

Reviews detailed algorithms
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Dissipation: Electron-Phonon Interactions

For narrow silicon nanowires the transport is not ballistic.

* Quasi-1D density of states due to confinement enhances electron-phonon interactions
* Long range polar optical phonon — electron interactions from oxide interface

The Generic Lowest order Self-Energy for Electron-Phonon scattering

Self-consistent Born Approximation for the lesser self-energy —

2*(r,r,;6) = (2m)~ f d’q1U(q) I expliq.(r, - r,)] x / \

{n,G(r;,r,;6 - hw )+ (n, +1)G (r;,ry;6 + haw, )} .=‘

{E — Hy — ZR}GR = 1

¥R = GRDR + GRD< + G<DR

G< = GRY<GA

y< = G<D<
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Do not de-couple !!

Example: de-coupling approximation for electron-phonon interaction

{E —H, — XR}GR =1
This approximation neglects
YR = GRDR+GRD< + the statistical component
of the retarded self energy:

G< = GRY<(GA

Leads to serious violations of the

y< — G<p< Pauli Exclusion Principle.
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Constraints

If the transport is not ballistic it is necessary to use the
many-body descriptions of self-energies. Several constraints emerge:

Continuity equation

Microscopic Conservation laws

Causality requirements-analyticity

Non-locality conditions
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Charge and Current Conservation

—a”gx”) + Ve j(x,£)=0
5

In stationary case: the current density must be constant in space
. e < < < <
V-J(r;E)T{GRz ~3G* +G=' -3FG }=o

This is a constraint on G<

This fails for the Born approximation:

2(r,056) = 2m)” [(d’q1U(Q)F expliq.(r; - ;)]

{n,G;(x,r;e-hw )+ (n,+1)G;(x,r 6 +ho,)}

But holds for the generalised Born approximation
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Other Conservation Laws

More generally, the microscopic continuity of momentum,

energy (and angular momentum) is required

D L e j(x1) =0
ot
KLU [ dx {VUx,0}n(x,1)=0
or
W) , [dx {VUx,0}* j(x.0)=0
ot

These fail for the Born approximation:

But hold for the generalised Born approximation

Ward Identities

Conservation laws hold if
Self-energy derived from
particular “dressed”
Feynman diagrams

oP[G]
oG

> =

Using the Luttinger-Ward
functional @




-m
¥
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Causality and Dispersion Relations

The retarded Green function GR(t,t’) is zero for t<t’

Fourier transforming over (t-t’) to energy space it follows that

GR (E) has poles only in the LH of the complex energy plane.

It is a causal function. Similarly it is often assumed that the self-energy has a
similar analytic structure. Both the Green function and self energy then satisfy
Dispersion relations of the form of a Hilbert transform:

I Tm =7 (E") |
E_F Useful for computing
The Real part from a model of the

Imaginary part

R P p=
Re>X (E)=-;f_w

Problems:

(1) Cannot set Re X to zero

(2) Care needed if Re part and Imaginary part are disjoint: get distributions
(3) The dispersion relation may be invalid:

2 need not be causal to make G causal.

(4) Accurate dispersion relation needed to ensure Spectral density sum rule
Otherwise density of states errors.

Barker and Martinez (2013)
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Electrostatic self-energy

* Gate all around
nanowire device

* Many body dynamic 0.8 -
correlation model
due to dielectric 0.6 =+ Pot
surfaces follows from o sefenergy
refS: --- Pot Selfenergy

Energy (eV)
o
N

J.R. Barker (2013)

C. Lietal, Phys. Rev.B 2 et
80, 195318 (2009). T %
C. Delerue, M. Lannoo, 0 10 00 ap o 20
Nanostructures, Springer X (nm)
(2004).

This conference (C-5)
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Non-Local (non-diagonal) Self-Energy

For a variety of electron-phonon interactions e.g polar optical coupling
the corresponding self-energy is non-local i.e non-diagonal in position basis.
Huge increase in computational complexity

n/a .
‘n 4 Fermi Golden rule K=C[,,da.1U@F explig.( -2,)]
- 2 2
= FSC-NEGF c-et L by oo Lt
© 31 Non-diagonal 2¢, &, ¢ (g +q;+57)
© self-energy
L] 2. 10— ' <«——— " (a)Constant
g) ¢ Scattering Kernel K(R)
— ; (b) Exact
qh, Dlagonal 2 6l (c) Approximate = |
b 1 l long scattering length
‘U 41 A=Ela=89
O
o % ' ' ' : 2}
00 0.05 010 0.15 0.20 = A A A=
Energy [eV] \Y V(@) Exact
2l (e) Approximate =— |
Test case: Kubis (2009) | Seneemaen e
Bulk GaAs @ 300 K -1 - 0 5 10

Separation in units of lattice spacing: R=(z,-z,)/a

n=10%cm3 m=-0.08 eV
Barker (2012)



7a| University | College of Science
~, of Glasgow | & Engineering

3.4 Approximations and Pitfalls

Self-energy approximations

Need to be self-consistent with Ward identities to maintain current conservation
Need non-locality in general or fails in known limits: realistic scattering rates

Full momentum and energy conservation needed: realistic momentum
and energy relaxation — conservation laws

Inelastic scattering cannot be approximated by elastic scattering:
or energy relaxation and statistical distributions become invalid (non-equilibrium)

Causality conditions must be respected (failures in density of states etc)
Use coupled equations: many-body effects and Pauli exclusion
Computational Issues

Non-locality breaks the fast compact algorithms.
Iterative self-consistent schemes required: convergence issues
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4. Applications to 3D Semiconductor Nano-Devices

Double gate MOSFET L _m
Silicon nanowire wrap-round gate MOSFET : el !
Atomistic variability B
Resonances < “

Vortex flows g |
Source-drain extensions- impurity aggregations  -"T -

Interface roughness

Strained systems

Architecture dependent dynamics
Dissipation silicon
Electrostatic Self-Energy silicon germanium
Causality issues

-V

http://johnreginaldbarker.co.uk/
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3D-Mode space nano-transistor with dissipation

Effective Mass from Tight binding

Inelastic, Local Self-Energy in
Self-Consistent Born Approximation
3typesoffandg

inter-valley optical phonons,
intra-valley acoustic phonons,

Violations of Mattheisen’s Rule
of the order of 13%

M. Aldegunde, A. Martinez and J. R. Barker,
Study of individual phonon scattering
mechanisms and the validity of Matthiessen’s
rule in a gate-all-around silicon nanowire
transistor, Journal of Applied Physics, 113,
014501 (2013)

1x10"

X
—
S

=—a Matthiesen’s rule
=—a all phonons N

+--¢ acoustic only ~<

»-x f only Se T T

#~+gonly  TTT=— -
. !

0.3 0.4

Resistance [£2]

1x10*

I 1 l 1 1
0.5 0.6 0.7 0.8 0.9
Gate Voltage [V]

FIG. 8. Resistances of the 20nm gate length silicon nanowire (S), (A), (G

and (F) transistors. The inset represents the data for high drain bias cond
tions in linear scale.
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Resonances due to single positively charged dopant

Gated Silicon quantum wire cross—section 2.2 nm x 2.2 nm
Positive point charge at centre of channel channel length 10 nm
Self-consistent (Hartree) screening gate length 6 nm

is obtained non-perturbatively. oxide thickness 0.8 nm
Polarisation effects due to SiO, included doped (uniformly) p - type at 10* cm™

0 4

ka1

25k

Potential (V)
Transmission

ot

0.1 0.2 0.3 0.4 0.5 0.6 0.7 i
Energy(eV)

—En=03249eV
—— En=0.30eV
== En=0.35¢eV

Z(twm)
Electron density (R. U.)

(=3 — o 23 Sy o ) -~

Shape of self-consistent screened potential is altered by gate potential.
Observe Breit-Wigner and asymmetric Fano resonances in energy continuum.
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Ab initio coherent scattering from discrete dopants in the source and drain of a

nanowire transistor using 3D NEGF simulations
N. Seoane, A. Martinez, A. R. Brown, J.R. Barker and A. Asenov (2008)

Example of atomistic effects:

Resonances due to single positively charged dopant

¥—* Smooth

® [CHANNEL| @ —a Ra

® @ [CHANNEL| ® ® <4+——— Ch
o [cranne] o *-——9 CI'

silicon
nanowire
MOSFET

active
channel

4 nmX
2.2 nm

X2.2nm

A range of resonant tunnelling
resonances from
Sombrero potentials

Breit-Wigner and Fano
Resonances

Mostly compatible with independent centres

Some evidence of cluster scattering

> 4F

b&)ht

pgoba

=

Transmission

[y
S G = AN n W

L | 1 | 1 | 1 1 L | L | |
03 04 05 06 07 08 09 1
Energy [ev]

- —
|
\.,

\
__ —

continuum states
NN [msonam state

R IA BN

distance (nm)
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CONCLUSION

Here endeth the tutorial and brief overview.
Lots remains to be done:

Initial state correlations

Time correlations

Time dependent NEGF

Better models for contact self-energies
Many-body processes

Finally, the References and Appendices provide background material and further details



John R Barker
2013 IWCE

References and 7 Appendices
with more details

see pdf file
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Appendix 1: Representatiuons and Pictures

Use Dirac notation (understand operator or c-number from context)

Eigenvalues a (real) of a Hermitian operator A

Ala>=ala> _ _
_ Canonically conjugate observables
orthonormality

<ala'>=4,, q.pl=qgp—pq =ih

{la>} complete set EI a><al=1

Expansion of arbitrary ket | >= EI a><aly >=E< aly>la>

Schrodinger Picture: state vectors evolve in time under action of the Hamiltonian H

o O
ih—Ily;t>=Hly;t >
ot Position representation

_ xlx>=xlx>  [drxlx><xl=1
Expectation value of observable A

<xlx'>=0(x-x")

<Alt]>=<y;t1 Aly;t > Wavefunction

Y(xt)=<xly ;t>
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Evolution Operator and Heisenberg Picture

ihilw;t>=H ly;t >
ot
ly;t>=U(t,t,) s, >
ihaiU(t,tO)=HU(t,tO)
t

Boundary condition: U(t,,t,) =1
Unitarity: UU" =1

Heisenberg Picture: state vectors constant in time; operators evolve

lyp >, =U"(tt,)y ;t>=U"(t,t,)U(t,t) |y ;t, >

A, (t)=U"(t,t,))AU(t,t,)

d 0
ih—A,(t)=ihU" (t,t,)— AU (1.t
” a2 (1) ( o)at OU(t,1,)

+HA, (1), Hy, (1)]

Expectation values

a<WPlA, (O yY>,=
<y ;t, |1 U (t,t,)AU(t,t,) |y 51, >=
<y ;tlAly ;t>
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Interaction aka Dirac Picture

Suppose Hamiltonian splits into an unperturbed and perturbed part

H=H,+V

H, time —independent; V(t)generally time dependent
|yt >, =expli(t—t,)H, /h]ly;t >

A (t)=expli(t-t,)H,/ h]Aexpl-i(t—t,)H, /]

State vector evolves under interactions V,(t)
Operators evolve under H,

ihdi lyit > =V.(0) ly;t >, V(1) = expli(t—t,)H, | h]V expl-i(t - t,)H, / h]
4

ihiAl(t) =| Al(t)?HO]
dt
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Density Matrix

Pure state |y;t >
o) =ly;t >< ;¢

mimanmm]
dt

Mixed state; if probability of state |y ;t>is P, :
p(0)=> ly;t>P, <yt
Equation of motion

mEMﬂﬁHWM]
ot

Expectation value
<A(t)>= Tr[p(t)A]=E EPn ly st><y stla><alAla><al

=2 <alAla>

a
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Appendix 2: Time-dependent Perturbation Theory 1

Let H=H,+V(t)

pli)=Y 1y, >f, <y,

PO =Y Nyst> f,<ystl =Y Uiy, > f, <y, 1U*(,1,)
Probability of being in a state [y, > is then

<y, lp)ly,>= Y fulky, UGy, >F =Y f.Plnn]

1 1

n n

Pln,n'l=y U@ t)yp, >’ Transition probability
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'Appendix 2: Time-dependent Perturbation Theory 2

From Appendix 1: for t >t, in Heisenberg picture
H, (t,t,) = expli(t—t,)H /h]H(t,)expl-i(t—t,)H / h]

ihaiU (t,t,)=H, (t,t HU (t,t,)
t

using BC: U(t,,t,)=1

solution satisfies integral equation:
Ult,t) =1/ h) [ di'H, (t',1,)U (¢',1,)
Iterating gives

Ult.t) =1+ Y (—i/h)”f; dt, f dtz...f:_l dt H (1,1 H , (1,,1,) % .. H (2,1,
p=1

using time ordering operator T this becomes

o (=i/h)’ t t
U(t,t0)=1+TE ( p') ftodtl todtz...ftodtpHH(tl,tO)HH(tz,to)><...HH(tp,to)

Ult,ty)=Texpl=G/ h) [ dt, H,, (1]
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Appendix 2: Time-dependent Perturbation Theory 3

From Appendix 1: for t>t,; in Dirac picture
V.(t,t,) = expli(t—t,)H,/h]Vexpl-i(t—t,)H, /]

0
ih—U, (t,t,)=V (t,t,)U,(t,t : , , ,
ot ((1:00) = Vi (0.1)U, (1:8) Interaction/Dirac picture is best for

using BC: U(t,,t,)=1 setting up Feynman diagrams etc

solution satisfies integral equation:

U,(t,to)=1—(i/h)f;dt'V,(t',tO)U,(t‘,tO)

Iterating gives

= . t b tp—l

U (t,t) =1+ Y, (—z/h)”ftodtl fto dtz...fto dt V, (1,1, )V, (t,,1,) % .V, (2,1,
p=1

using time ordering operator T this becomes

(—=i/h)’
p!

U,(1,1) =1+ T fto dr, [ dtz‘“fto dt V, (1,1, )V, (t,,1,) % .V, (L., 1,)
=]

U, (t.ty) = Texpl=Gi/ ) [ dt, V,(t,,t,)]
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Appendix 3: Perturbation Theory at zero temperature

This problem is long-established in perturbation theory
Assume many-body system is in the ground state

pt) =¥, ><¥, |

ground state of exactltime independent Hamiltonian H = H, + V.I

G(x,t;X,t ) =< G >=< W, I T{W(x,HW*(x',t)} | ¥, >
In terms of W, > the ground state of H,, it can be shown that

<W,, IT{S(0,—-0)¥,(x,n))¥, *(x",t)} | W, >
<W,, 15(0,—0) W, >

G(X,t;X,t )=

here the S-matrix is defined as

S(a0,~0) = Texp[-(1/7) [~ dt"V,(t")]




] ) o ] John R Barker
The time-ordering operator is slightly more subtle in many-body theory 2013 1wcE

For every time re-ordering which takes P steps, multiply result by (-1)° for Fermion
Operators.

The expression for the S-matrix and Green function may be evaluated

using Wick’s Theorem which generates the usual Feynman diagrams.

Huge reduction of terms (the disconnected diagrams) occurs due to cancellation
with the denominator (phase factor) in the expression for G.The irreducible diagrams
define the self-energy for which it is proved

G=G,+G,2G
The Dyson equation.

The simplest form for G is the generalised Born approximation.
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Appendix 3: finite temperature 0

This problem is also long-established in perturbation theory.
Two simplifying features:

1. The Hamiltonian H=H,+V is time-independent
2. The form of the density matrix is known

3. There is a fortuitous similarity between the grand canonical statistical density
matrix and the evolution operator U in imaginary time.

The problem can be re-stated in terms of time(imaginary) evolution between
t=0 and t=ih/kgT.
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Appendix 3: finite temperature 1

Thermal equilibrium (known form of solution)

explBUH-pNY )
Trexpl-pH -y~ CPEPE =l Py

___explBuN1U=ihB,0)  _ explfuN] U(=ip,0)
Tr{explBuN1 U =ihp.1,)} z

In terms of the thermal equilibrium described by H,we define

Op, = exp[-f(H, —uN)] _ exp[-f(H, - uN)] :
Tr{exp[-p(H, - uN)1} Z, We thus separate out

The free equilibrium

density matrix and an

Averages evolution operator
<...>, =Tr{p,..-} defined in

complex time t
O<t<-ihfp
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Appendix 3: finite temperature 2

We may now use a modified Interaction representation in which the evolution
in time is driven by evolution operators in complex time (Matsubara work).

Modified interaction picture
A4 (T)=exp[t(H, - uN)]Aexp[-T(H, - uN)]
Vl/s (t)=expl[t(H,—uN)] V exp[-t(H, - uN)]

The same Wick’s theorem and
. Feynman diagrams work
S-matrix But the averages are over the
exp[-T(H — uN)]=exp[-t(H, - uN)IS;(7) non-interacting
_ equilibrium density matrix.
explT(H - )] = S;' (T)expl[-T(H,, — uN)] i Y
0

6_17 S]ﬁ (17) = _V]ﬁ (t)SIﬁ (77)

S,5(1) =T, exp[- [ Ord‘l,"VIﬁ(T')]

Z= Tr{pOOT{SIﬂ (5,0)}
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Appendix 3: finite temperature 3

The Green function of interest is (for electrons)

G(x,7;x',0)=-<exp[t(H - uN)|¥(x,0)xp[-T(H - uN)|¥ *(x',0)> 7>0
+<explt(H — uN)|W¥W*(x',0)xp[-t(H - uN)]¥ *(x,0)> 7<0

<TAS,; (LY ,;,(x, )W, *(x',0) >,
< TTSIﬁ(ﬂ) >,

G(x,7;x',0) =

G,(x,7;x',0) =< T AY ,(x,D)¥ , *(x',0) >, The same Wick’s theorem and
Feynman diagrams work

But the averages are over the
non-interacting

equilibrium density matrix.
Dyson equation again holds

G=G,+G,2G
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Appendix 4: Choice of NEGF method

Zero Temperature

Finite Temperature

Use adiabatic switching from
ground state to ground state

pt)=¥,><¥, |

time independent Hamiltonian
H=H,+V.

Expectation value

<A>=<W¥ IAI¥Y, >

Switch to Interaction(Dirac)picture

If W, >= ground state of H

Exploit known form
of solution

And exponential
dependence on H

Thermal equilibrium pf = !

k,T

o = SXPL=BH —uN)]
" Tr{exp[-B(H - uN)1}
___exp[uN] U(=ihp,0)
Tr{exp[fuN] U(-inf,0)}

<W,, [T{S(w,-0)A, ()W, >

<A>=

<W,, [S(0,-0) W, >

here the S-matrix is defined as

S(a0,~0) = Texp[-(1/7) [~ dt"V,(t")]

<A(t)>=
expl BulN U (-ihp,t,)U(t,,t)AU(t,t,)
Tr{expl fuN]U(-inp,t,)}

Tr{ ¥
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Appendix 5: The Problem of Non Equilibrium

The general zero temperature method fails because :

(i) requires a simple relation
(phase difference only) between the states at t= * infinity

| W, (—%) >=exp[i0] | W, () >
(i) This only works because of: adiabatic switching on and off of the interactions,

assumption of a non-degenerate ground state.
Not possible in non-equilibrium.

(iii) the perturbations include applied fields that may be time dependent and long lived.

The finite temperature method depends on knowing the form of the solution,
in particular

(i) atime independent Hamiltonian

(i) The density matrix has an exponential dependence on H
Can define perturbative evolution in complex time from t, to —ihf=ih/k,T
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The Keldysh time-ordered Green Function

Gx,7;x",7")=-i< T, W(x,")¥(x",7")>=Tr[p(H, + V)T, ¥, (X, 7)¥ , (x',7")]
H=H,+V

Heisenberg representation : operators evolve under full Hamiltonian (H +U)

T, : Keldysh contour time ordering, put later Keldysh times to the left.

(use, fermion rules x(-1) per interchange),
p(H) = expl-p(H -uN)]/Z

This Green function has the same perturbation theoretic structure as
zero temperature or finite temperature theory.
In particular, G satisfies a Dyson equation.
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The Green Function defined on the Keldysh contour

Imaginary time

G(t,T’)

Keldysh Contour
Turn on all interactions from t0

(start in equilibrium of H,)
Neglects initial state correlations, but includes

transients

Real

ime
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The Green Function defined on the Keldysh (Keldysh-Kadanoff-Baym) contour

Imaginary time

G(t,T’)

Real time

Evolution of

interacting Keldysh-Kadanoff-Baym Contour
equilibrium

state includes initial state correlations at time t,

to’iﬁ
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The Green

Function Zoo:

distinguished by ordering on the Keldysh contour

Example 1: G(t,t )=G<(t,t’);

T<T ;T=>1t, T =>t’; t<t’

Imaginary time

G<(t,t’)

Real

We shall ignore the K-B branch

ime
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The Green Function Zoo:
distinguished by ordering on the Keldysh contour

Example 2: G(t,T )=G>(t,t’); T>T ;T=>1,1T =>t’; t<t’

Imaginary time

G>(t,T’)

Real time
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The Green Function Zoo:
distinguished by ordering on the Keldysh contour

Gx,7:x,t)=<xIG(z, ") Ix > -
=—ih< Ty, (X, 7)Y, (X,T) ——
J
!/ !/ !/ GT
=G, (X,7;X,T') t,t onupper contour
t t
@
. ) G~
=G (x,7;X,T") t onlower contour,
t' on upper contour
t t
=G (x,7;X,T') t onupper contour, * ) G<
t' on lower contour
! !/ ! t t’
= G..(X,T;X,T') t,t onlower contour
—— GT*
< Less Than; > Greater Than; T time-ordered, T* anti-time ordered
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Identities

R
Gf=G, -G =G -G,.
Retarded Green Function

‘GR(Xat;X'at') = _lhﬁ(t_t') < {W(X,t)aw*(x',t')} >

Spectral Function

A > <
‘G =GT_G =G _GT* A=GR_GA=G>_G<

Advanced Green Function

GA(x,t;x',t") = ihd(t'-t) <{yp(x, 1),y (x','t)} >

G, =G +G" =G, +G,.

Keldysh Green Function

G (x,5;x',t") = —ih <[yP(x,1),y (X,1)] >
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Three independent Non-Equilibrium Green Functions

Only 3 independent
Green functions
typical choice:

G*< statistics
initial state

GR, GA dynamics

G> and G*, G~*
Advanced Green function
G'(x,t;x',t)= <xIG'(t,t) x>
G'(t,t)= O(t' - ){G (1.t -G (1,t)}
Retarded Green Function
GY(x,t:x',th= <xI1G"(t,t)I1x >
GX(t,t) = 0(t-th{G (t,t") -G (t,t")}
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GR and Gs

The Retarded Green Function GR  The Lesser than Green Function G<
Describes the Electronic States Describes the Occupancy of States

(DYNAMICS) (STATISTICS)
Confinement-sub bands et < _ ,~Re<,A
Applied field shifts G- =G"X>G

Resonances
Bound states
Lifetime of states

{E—Hy,—eqp—-3R}GR =1
0
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Equations of Motion

Start from the Dyson equation on Keldysh contour

G=G,+G,2G
GXT:x'7'=G,(XT;X'T") +

fdxﬂdx!!!de,L,HfK d,ll,H|GO(X,L,,XH,L,H)Z(XHTH,X!HTH')G(X!HTHI;X',L,!)

Transform to Real Times
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Equations of Motion

We encounter products such as AB and triple products such as ABC along the
Keldysh contour. For example: D ¢.1)= [ d7, AG¢.z")B(E".1)

D (t,1")= [ dv, At T")B(x",1") = A(t,t”)B<(t”,t)
f:dt” AT(t,t”)B<(t”,t')+f_idt" A(t,t")B.(t",1") = = R ™
f Cdt"{ A (1B ) + AN B, (1" 1)} t ot
C =AB"+A°B,.

A< (t,t”)Bp(t”,t)
A"=A"+A%; B..=B"-B"
.C:=A"B"+A°B* o .-._)
f:df"{ AR, tMB(t",tY+ A(¢,tB*(¢",t")} v

Products of two and three Keldysh objects-> access a whole zoo of Green Functions
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Langreth Rules

D~AB D~ABC

(AB) ~A®B*+A“B* | (A BC) ~A®B*C"+AB*C”*+ A*B~C"
(A B ~A®B”+A”B* (A BC)Y ~A®B*C>+AB*C* + A*"B>C*

(A B)R ~ AXB"® (A B C)R ~ ARBRCR
(A B ~A*B* (A B O)* ~A*B*C*
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Equations of Motion

Project the Dyson equation from Keldysh contour to real time :
Keep U explicitly as a perturbation here

G=G,+G,(U+2)G Dyson equation on Keldysh contour

G* =G +G,UG" +G,="G" ={G; "' -U-="}"

First Keldysh equation

G =G;+G, UG +GUG" +G, =G +G,=°G" + G:="G"

G =(1+G*"U+Z)G; {1+ U +=HG" )+ G =*G"

Vanishes in steady state, no ISCs  Second Keldysh equation
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Equations of Motion

{zh(ai) -H, (X;—ihV')} G,(x,7;x",7")=0(x - x")o(,T")
T

In real time domain

2x72
{ihi+h v }G(f(x,t;x‘,t')=6(x-x')5(t—t')
or 2m

2v72
ihi+h v G, (x,1;x',t")=0
or 2m

+conjugate equations in x',t'
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Equations of Motion: stationary case

The stationary case is determined by transforming to the time variables T,= (t-t’);
setting T,=(t+t’)/2 and setting time derivatives in d/dT, to zero. Finally introduce
energy-dependent NEGF by Fourier transforming over T,.

G*(x,x";E) = Thil() [ dT,expGET, / i) G*(x,x5T,,T5)
2

G"={G; '-Uu-z"}"!

Huge simplification
GY '={E+in-H,} IF self-energies
Are diagonal

G =G"ZG"
2

{E+h22v;—U(X)}GR(X,X';E)=5(X-X')+fdx" >*(x,x";E)G*(x",x"E)
m

2

{E+1 2'; ~Ux)}G(x,x"E) = f dx" 2°(x,x"; E)G*(x",x" E) + f dx" =¥ (x,x": E)G*(x",x"E)
- ?m
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silicon Velocity field

nanowire
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coherent
time-dependent N
flow

Arises from superposition of 2 different travelling J R Barker

Waves in 2 different transverse (confined) states 1938
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Velocity flow fields were discussed in: —

BARKER, J.R. ”“On the pilot-field representation of
guantum transport theory”,
Semiconductor Sci.Tech. 9 911-917 (1994).

BARKER, J.R., ROY, S., BABIKER, S. “Trajectory
representations, fluctuations and stability of
single electron devices”,

Science and Technology of Mesoscopic Structures’,
Namba, S., Hamaguchi, C., Ando, T,, eds.,
(London:Springer Verlag, Ch 22, 213-231 (1992)
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Fig. 3. The reconstructed
average trajectories of an
bnsemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
275:£0051082:01m
by using the momentum data
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the . .

x position on the subsequent 3000 4000 - miggm ds:‘aggm 7000 8000
imaging plane that each

trajectory lands is calculated, and the measured weak momentum value k, at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If 3
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.

Transverse coordnate|mm)

. . . .
A A A A

www.sciencemag.org SCIENCE VOL 332 3 JUNE 2011 1
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The variability problem: short channel double-gate Si MOSFETs

John R Barker

2013 IWCE
Atomistic effects §t0m|§tlc o 2D NEGE
impurity distribution : :

simulations

_Xm)

Potential(m\)

-1000

-ts00-4

Current (Alum)

Martinez and Barker et al

IEDM 2005
NPMS-7/SIMD5
J. Phys. Conf . 38
192-195 (2006)

treat impurities exactly

Large shifts
in threshold
voltage and

conductance
due to micro-
distribution of

impurity atoms

1000

1200

1400

1600 1800
Voltage (m\V)

2000 2200 2400




MARTINEZ A., SVIZHENKO, A., ANANTRAM, M.P., BARKER, J.R.,
BROWN, A.R.,and ASENOV, A.,

I nte rfa ce rou g h ness ‘A study of the effect of the interface roughness on a DG-MOSFET using a full 2D

NEGF technique’
The International Electronic Devices Meeting [IEDM 2005, San Francisco,
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Electron and current density landscapes show strong inhomogeneity for rough interfaces.
Devices with different generated randomly generated roughness patterns have been compared.
At nano-scales the effects of the specific profile of the surface roughness do not self-average.
The total macroscopic current pattern follows the microscopic detail of the roughness.

While the related threshold voltage fluctuations of the order of 100mV on average,

the subthreshold slope remains quite similar between the different devices.




Random dopant aggregation in source-drain extensions John R Barker
in double gate MOSFETs 2013 IWCE

From: H.Fukotome, 290 490 690 8(;'0 1 0.00 1 2.00 14.00
= 28 nm Y. Momiyama, E. Yoshida, 10-2 |

I 44— | M. Okuno, T.Itakura and
- e T. Aoyama

IEDM Technical Digest (2005)

Lpoly

Fig. 9 Carrier profile around S/D extension region in n-MOSFET with gate length

of 28 nm. This image was taken at negative gate bias voltage and under measur- Fluctuations in total
ing conditions sensitive to n-type region. Overlap length of S/D extension region number of dopants 1 0'5 SV~ . L L . L
(X,) is about 6 nm. has a stronger effect 200 400 600 800 1000 1200 1400
(50% fluctuation in V (mv)
on-current) than
purely positional 200 400 600 800 1000 1200 1400 0.016
— fluctuations (10%). 2l ) ' ' ' ' T
E 10
£ The computed on-
- B
current fluctuations
are significantly
- larger than the
’ classical predictions. —& 28 clusters
=3 =&~ 18 clusters
£ 0 -5~ 13 clusters
= =& 30 clusters
2 22 clusters
—w— smooth
A 0 3 —&— 35 clusters
electron density
0.004
5 0.002
= Martinez , Barker et al

=", L L . L p
IEEE Trans Nanotechnology 200 400 600 800 1000 1200 1400
6 438-445 (2007). V (mV)
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Atomistic treatment of silicon channel

H-termination
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S
=
£
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et
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(4,4,0)

Si slab 90 layers

Si slab 30 layers

Si slab 10 layers

A>m.¢ >9w_cm

15 A

Complex interface

Energy levels

Shrinking slab

SSaOIy} ge|s

N\

Si Slab

DFT calculations
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Impact of Body-Thickness-Dependent Bandstructure on Scaling of Double Gate

MOSFETs: a DFT/NEGF study

A. Martinez, K. Kalna, P. V. Sushko, A. L. Shluger, J. R. Barker, and A. Asenov, Senior Member IEEE

i Universit
of Glasgox}\;

John R Barker

2013 IWCE

- e o I
Gate

Valleys in 3D band
K, , structure of bulk Folded valleys in
2D band struciure

Slab thickness

Abstract—First principles density functional theory has been
used to caleulate the 2D bandstructure of Si slabs with different
thicknesses. From the calculated 2D bandstructure, electron
longitudinal and transverse elTective masses have been extracted
as a function of the slab thickness. These thickness dependent
electron effective masses have then been used to simulate In-Vo
characteristics of scaled, sub-10 nm double gate (DG) MOSFETs
and to compare them with the results obtained using bulk masses,
The channel thickness dependence of the Si bandstructure starts
to afTect noticeably DG MOSFET performance at channel lengths
below 10 nm, lowering the on-current by approximately 10%
for transistors with & body thickness of 2.6 nm, and by 20% for
transistors with a body thickness of 1.3 nm. On the other hand,
the subthreshold swing is improved by 10% in the & nm gate
length DG MOSFET and by 15% in the 4 nm gate length device.

Finally, the impact of thickness dependent effective masses has
been related 1o the behaviour of the transmission coellicients.

One-electron energy (eV)
~ ('.n' EN L)

.
- O
‘\

0
v

Z-dimension [nm]

10 Oxide

Oxide

30

-10 ) 0. 10
X-dimension [nm]

20

E

B

| HOMD. | [




The Datal

25

T ¥

PO g ad
> —— ',Q;‘
- = ‘;;, -

P e

.
m(l)=b--o-- &
m(t)=c -—-e-—
m(l)=b s #

'v V,=0.05V
(= m(t)=c ---+---
f 0008 Y A e a0
A
0.5 1.0 15

Fig. 8. Ip-Vg characteristics at indicated drain voltages for the 10 nm
gate length, 6.1 nm thick body DG MOSFET obtained from the 2D NEGF
simulations assuming a ballistic transport along the channel. The behaviour
of the on-current is shown on linear scale while the subthreshold behaviour
is presented on logarithmic scale opposite. The impact of confined (c) masses
in transverse [m(t)] and longitudinal [m(l)] transport directions is compared
with that of bulk (b) masses.
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Fig. 9. Ip-V characteristics at a low drain bias of 0.05 V and a high drain
bias of 0.7 V for the 6 nm gate length, 2.6 nm thick body DG MOSFET
shown on linear and logarithmic scales, respectively. The effect of confined (c)
and bulk (b) Si masses in transverse [m(t)] and longitudinal [m(1)] transport
directions is compared.
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Fig. 10. Ip-V characteristics at indicated drain voltages for the 6 nm gate
length, 1.3 nm thick body DG MOSFET are plotted on linear scale for the on-
current regions and on logarithmic scale for the subthreshold region comparing
the effect of progressive replacement of transverse (t) and longitudinal (1) bulk
(b) Si masses with their respective confined (c) values.
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Fig. 11. Ip-Vg characteristics at a low drain bias of 0.05 V and at an
expected operational bias of 0.6 V for the 4 nm gate length, 1.3 nm body
DG MOSFET. Again, results are plotted on linear and logarithmic scales in
order to evaluate the on-current and subthreshold regions, respectively. The
bulk (b) values of transverse [m(t)] and longitudinal [m(l)] electron effective
masses are replaced with their confined (c) values as indicated.

John R Barker

2013 IWCE
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Appendix 8: Transmission curves and atomistic dopants
What to expect

simple attractive potential



Transmission function T(E)

" John R Barker
2013 IWCE

Special case  E,<E<E,

first mode propagates,
second mode evanescent

— |
2r N

/
\

Energies of bound states

{—(1 +2N) + \/1 + Sm—szz}
(an)

hZ
E=E* =E, - (xz—)
2m
2
Wmn = —(ﬂ)vmnn’ans
2m
N =0,1,2,...

background

Transmission coefficient

1(E) =l F —E=E™)
- (E-E*, -A,))" +T;

transmission

generalised Fano resonances



Transmission function T(E) John R Barker

2013 IWCE
case t=1 SA =—-0.1
1.5;— A — O 0.0 : : N
b A =0.1

Breit-
Wigner b
resonance

Asymmetric Fano Resonances
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PHYSICAL REVIEW B 70, 245308 (2004)

Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers

Jens Hjorleifur Bardarson,! Ingibjorg Magnusdottir,! Gudny Gudmundsdottir,! Chi-Shung Tang,> Andrei Manolescu,! and
Vidar Gudmundsson!

5F =
43 £
23 i
o <l
O 3
2F 5L
1r 1k
0 | | | |
0 5 E (Ry) 10 15 00 b 3
hard walled parabolic wall

2D, numerical non self-consistent potential T(E) only




Minima in transmission just before next mode.
Back-scattering by a quasi-bound state originating
from an evanescent mode in next energy sub-band.

| I
3 4 5

E (Ry)

Coupled mode interpretation of lack of minimum in first sub band
Coupling between first propagating mode and

guasi-bound state in the first evanescent mode gives a

zero matrix element because wave functions for the first

and second transverse modes are even and respectively:

thus no minimum in transmission.

John R Barker
2013 IWCE

2D
model
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Resonances in electronic transport through a quantum wire with impurities and variable
cross-sectional shape

Vassilios Vargiamidis* and Hariton M. Polatoglou

Detailed discussion of Fano resonances
for 3D analytical model based on
Poschl-Teller potentials.

Non-self consistent

Only computes transmission

No device profile
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gate potential: realistic nanowire device-self consistent
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