Non-Boolean Computing Using Spin Waves

A. Papp^{*+}, G. Csaba^{*}, W. Porod^{*}

*Center for Nano Science and Technology, University of Notre Dame, Notre Dame, USA +Pazmany Peter Catholic University, Budapest, Hungary e-mail: {appap,gcsaba,porod}@nd.edu

INTRODUCTION

Spin waves display similar interference behavior as optical waves, but at much shorter wavelengths (<100 nm), and they are also more straightforwardly generated on-chip. This gave rise to a number of proposals for 'spin wave computing' devices [1][2], aimed at mimicking on the nanoscale the behavior of optical logic gates, switches, and interconnections.

Moreover, spin waves could be well-suited for non-Boolean algorithms as well, such as pattern recognition using interference [3][4]. By means of micromagnetic simulations, we show that spinwaves can perform computational primitives that are well established in optics. Spin-wave based computing media can be straightforwardly integrated with CMOS units to form a generalpurpose signal processing system.

SPIN-WAVE OPTICAL ELEMENTS

The system that motivates this work is sketched in Fig. 1. The spin-wave sources and the phase shifters can create an arbitrary wavefront (just as in the in-line holography scheme of Gabor [3]), and the interference pattern is read out at the opposite boundary of the device.

For spin-wave sources we use AC driven spintorque sources, where a locally-oscillating magnetic moment injects spin waves into a thin Permalloy film (Fig 2). The physical structure of the spin-torque sources is identical to that of a spin-torque oscillator, but they are not used in the self-oscillating regime. For self-oscillating sources the phase is difficult to control, while for the driven oscillators it is straightforwardly linked to the driving source. Multiple, coherently-driven spin-torque sources can realize line sources (Fig 3.), akin to a laser source in a real optical system. Placing slits (Fig 4.) or a lens (Fig 5.) in the path of the wave, one can imitate interference and focusing phenomena known from optics. Most importantly, a phase shifter (Fig. 6) can be realized by applying a local magnetic field, which changes the phase velocity of the wave.

NON-BOOLEAN COMPUTING USING SPIN WAVES

Placing the above-simulated optical components in the system of Fig. 1, one arrives at a device that can execute a sequence of optical processing steps, such as holographic pattern recognition or Fourier transformation. CMOS circuitry can control the flow of the optical primitives and perform additional (Boolean-based) pre- and post-processing steps.

ACKNOWLEDGEMENT

We thank G. Bourianoff, D. Nikonov (Intel Corp.), and A. Csurgay (Pazmany University, Budapest) for stimulating discussions, and the NSF-SRC 'Nanoelectronics Beyond 2020' grant for financial support.

REFERENCES

- T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev. *Realization of spin-wave logic gates*. Applied Physics Letters 92, no. 2 (2008): 022505-022505.
- [2] A. Khitun, M. Bao, and K. L. Wang. *Magnonic logic circuits*. Journal of Physics D: Applied Physics 43, no. 26 (2010): 264005.
- [3] D. Gabor: Nobel Lecture: Holography, 1948-1971. Nobelprize.org. 24 Feb 2013 <u>http://www.nobelprize.org/nobel_prizes/physics/laureates/</u> 1971/gabor-lecture.html
- [4] D. Feitelson: Optical Computing: A Survey for Computer Scientists The MIT Press 1992

