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‡Division of Applied Mathematics, Brown University, Providence, RI 02912

e-mail: gamba@math.utexas.edu, majorana@dmi.unict.it, jmorales@ices.utexas.edu, shu@dam.brown.edu

Abstract—
The present work is motivated by the development of a

fast DG based deterministic solver for the extension of the
BTE to a system of transport Boltzmann equations for full
electronic multi-band transport with intra-band scattering
mechanisms. Our proposed method allows to find scattering
effects of high complexity, such as anisotropic electronic
bands or full band computations, by simply using the
standard routines of a suitable Monte Carlo approach only
once. In this short paper, we restrict our presentation to the
single band problem as it will be also valid in the multi-
band system as well. We present preliminary numerical
tests of this method using the Kane energy band model, for
a 1-D 400nm n+ −n−n+ silicon channel diode, showing
moments at t = 0.5ps and t = 3.0ps.

INTRODUCTION

The semi-classical Boltzmann-Poisson system guaran-
tees a good description of the dynamics of electrons
in modern semiconductor devices. The equations of this
model are given by

∂f

∂t
+

1

h̄
∇kε · ∇xf −

q

h̄
E · ∇kf = Q(f). (1)

∇x · [εr(x)E] = − q

ε0
[ρ(t,x)−ND(x)] . (2)

In Eq. (1), f represents the electron probability density
function (pdf ) in phase space k at the physical location x
and time t. E is the electric field and ε(k) is the energy-
band function. The collision operator

Q(f) =

∫
Ωk

[S(k′,k)f(t,x,k′)− S(k,k′)f(t,x,k)] dk′

describes electron-phonon interactions through the kernel
S(k′,k). Physical constants h̄ and q are the Planck
constant divided by 2π and the positive electric charge,
respectively. In Eq. (2), ε0 is the dielectric constant in
a vacuum, εr(x) labels the relative dielectric function
depending on the material, ρ(t,x) is the electron density,
and ND(x) is the doping. The kinetic equation (1) is
an equation in six dimensions (plus time if the device
is not in steady state) for a truly 3-D device. This
high dimensionality has been a motivation for the BP
system to be solved by the Direct Simulation Monte

Carlo (DSMC) methods [1]. Yet we have proposed
in [2] a deterministic approach based discontinuous
Galerkin (DG) method for solving Eqs. (1)-(2) that can
be competitive. We refer to [2] for a detailed description
of DG and examples of applications of the DG scheme
to 1D diode and 2D double gate MOSFET devices.

THE PROPOSED METHOD

We assume that Ωk be a bounded domain of the k-
vector variable, and we introduce a partition of it by
means of a family of N open cells Cα such that, for
every α and β,

Cα ⊆ Ωk, Cα ∩ Cβ = ∅ (α 6= β),
N⋃
α=1

Cα = Ωk .

If we integrate the kinetic equation Eq. (1) over the cell
Cα, then we obtain

∂

∂t

∫
Cα

f(t,x,k) dk +∇x ·
∫
Cα

1

h̄
∇kε f(t,x,k) dk

− q

h̄
E ·
∫
∂Cα

f(t,x,k)n dσ =

∫
Cα

Q(f)(t,x,k) dk, (3)

where n is the normal to the surface ∂Cα.
Any Galerkin method at the lowest order for the k-

vector variable, given by a piecewise constant approxi-
mation, assumes that in every cell Cα and for fixed x and
time t, f can be approximated by an unknown fα(t,x).
This means that we are assuming f , for fixed t and x,
to be constant in each cell, except for the boundaries of
the cells, where f is not even defined. Physically, the
unknown fα(t,x) representing the approximated proba-
bility density function of finding an electron at physical
position x and time t, with its wave-vector k belonging
to the cell Cα.
Introducing the approximation for the distribution func-
tion f , we have

∂

∂t

∫
Cα

f(t,x,k) dk ≈Mα
∂fα
∂t

(t,x),



where Mα =

∫
Cα

1 dk is the measure of the cell Cα.

Now, if we define

ηα =

∫
Cα

1

h̄
∇kε dk , (4)

Kαβ =

∫
Cα

dk

∫
Cβ

dk′ S(k′,k) , (5)

then we have

∇x ·
∫
Cα

1

h̄
∇kε f(t,x,k) dk ≈ ηα · ∇xfα(t,x) ,

and∫
Cα

Q(f)(t,x,k)dk ≈
N∑
β=1

[Kαβ fβ(t,x)−Kβαfα(t,x)].

Therefore, we obtain a set of equations (for α =
1, 2, ..., N ), which gives an approximation of the Boltz-
mann equation (1)

Mα
∂fα
∂t

(t,x)+ηα·∇xfα(t,x)− q
h̄
E·
∫
∂Cα

f(t,x,k)ndσ

=
N∑
β=1

[Kαβ fβ(t,x)−Kβαfα(t,x)] . (6)

Eqs. (6) contain yet the “old” unknown f in the surface
integral. Here, f can be approximated using fα and other
“new” unknows fγ , where the indexes γ correspond to
the nearest cells to Cα. The specific form of this transport
term related to the electric field requires the use of some
standard definition of the numerical flux f̂(fα, fγ ...)
according to the DG method (read the Appendix at
the end of this paper for more details). After this step,
Eqs. (6) become a set of N partial differential equations
in the new N unknowns fα. We remark that the constant
coefficients Mα, ηα and Kαβ do not depend on the
unknown f , but only on the domain decomposition, the
energy-band function ε and the kernel S(k′,k) of the
collision operator.

The main difficulty in applying DG method to Eq. (1)
is to calculate the numerical parameters Kαβ for not
simple analytical or real numerical band, as one tries to
apply quadrature formulas to Eq. (5).
Here, we propose a very easy scheme to find the value
of the parameters Kαβ by simply using the standard
routines of a DSMC (Monte Carlo) solver only once
to determine the scattering process.
To this aim, we consider the Boltzmann equation Eq. (1),
with zero electric field, for spatially homogeneous solu-
tions, i.e.

∂f

∂t
= Q(f) . (7)

We denote by Γ(k) the total scattering rate

Γ(k) =

∫
Ωk

S(k,k′) dk′.

This is known for analytical band structure (for instance,
the texbooks give its explicit formulas for different
materials) and it is used in DSMC code also in the full
band case. Now, Eq. (7) writes

∂f

∂t
=

∫
Ωk

S(k′,k) f(t,k′) dk′ − Γ(k) f(t,k) . (8)

Let be β ∈ [1, N ]. Therefore, we define the initial data

f(0,k) = φ(k) =

{
1 if k ∈ Cβ
0 otherwise

Choose a small time step ∆t and solve Eq. (8) using
a DSMC procedure only in the small interval [0,∆t].
So, we will know, with a reasonably good accuracy, the
solution fMC(∆t,k) at time ∆t. Consider again Eq. (8).
Since,

f(∆t,k) ≈ φ(k) + ∆t

×
[∫

Ωk

S(k′,k)φ(k′) dk′ − Γ(k)φ(k)

]
,

we have

f(∆t,k) ≈ [1−∆tΓ(k)]φ(k)

+ ∆t

∫
Cβ

S(k′,k) dk′ . (9)

Assuming the equivalence of BTE e DSMC, we replace
Eq. (9) with

fMC(∆t,k) ≈ [1−∆tΓ(k)]φ(k)

+ ∆t

∫
Cβ

S(k′,k) dk′ . (10)

Now, φ(k) is the given initial data and we have found
fMC(∆t,k) by means of DSMC; hence, Eq. (10) gives
the parameter Kαβ :∫

Cα

dk

∫
Cβ

dk′ S(k′,k)

≈ 1

∆t

∫
Cα

[fMC(∆t,k)− [1−∆tΓ(k)]φ(k)] dk

=
1

∆t

[∫
Cα

fMC(∆t,k) dk− δαβMα

]
+ δαβ

∫
Cα

Γ(k) dk,

where δαβ = 1 if α = β, and 0 otherwise.

The following table shows the errors between the exact
values of Kαβ and the values obtained by means of a
DSMC code, when the Kane model for the energy band



is used.

particles maximum error mean value error
106 0.06291 0.0044408
107 0.01403 0.0014447
108 0.00906 0.0004225

5 · 108 0.00271 0.0002024
109 0.00145 0.0001313

This method does not rely on scattering term symmetries
and this proposed new approach extends to highly com-
plex scattering mechanisms such as anisotropic electronic
bands or full band calculations.

PRELIMINARY NUMERICAL RESULTS

For the one dimensional silicon n+ − n− n+ 400nm
channel diode, where the doping is ND = 5×1017 cm−3

in the n+ and ND = 2× 1015 cm−3 in the n region, we
use 1440 cells in k-space and Nx intervals in x-space.
The applied potential is 2V . We consider the Kane model
for the energy band, and we show some quantities at time
t = 0.5ps (a transient state) and t = 3.0ps.
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Fig. 1. Density of charge in cm−3 at t = 0.5 ps. Continuous line
(Nx = 200), points (Nx = 120).
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Fig. 2. Velocity in cm/s at t = 0.5 ps. Continuous line (Nx = 200),
points (Nx = 120).

nx minimum maximum
120 1.0517e− 14 7.133e− 04
150 1.0517e− 14 7.223e− 04
180 1.0520e− 14 7.350e− 04
200 1.0519e− 14 7.389e− 04

Minimum and maximum of pdf multiplied a fixed func-
tion of k at 0.5ps (a.u.)
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Fig. 3. Mean energy in eV at t = 0.5 ps. Continuous line (Nx =
200), points (Nx = 120).
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Fig. 4. Electric potential in V at t = 0.5 ps. Continuous line (Nx =
200), points (Nx = 120).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5

nx = 120

nx = 150

nx = 180

nx = 200

Fig. 5. The ratio, multiplies by 100, of the number of cells in phase
space where pdf is negative to the total numbers of cells versus time
(in ps) for different Nx
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Fig. 6. Density of charge in cm−3 at t = 3.0 ps (Nx = 120).
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Fig. 7. Velocity in cm/s at t = 3.0 ps (Nx = 120).
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Fig. 8. Mean energy in eV at t = 3.0 ps (Nx = 120).

APPENDIX: TREATMENT OF THE TRANSPORT TERM
RELATED TO THE ELECTRIC FIELD

The term

− q
h̄
E ·
∫
∂Cα

f(t,x,k)n dσ

still contains the original unknown pdf f , as it needs
its value over the surface. However, this transport term
related to the electric field E can be approximated by
means of some standard definition of the Numerical Flux
f̂ according to the DG Method, adequate for a piecewise
constant approximation. We will use the value fα of the
piecewise constant approximation for f in the cell Cα
and the values fγ in the nearest cells Cγ neighboring
Cα.

To illustrate this with a particular example, consider
the case in which the electric field goes along the x
axis: E = (Ex, 0, 0). This 1D case has an associated
cylindrical geometry in the k-space:

k = k∗(u, r cos θ, r sin θ)

where k∗ is a constant with dimensions of a kxi -
component, the normalized u coordinate indicates the
position along the kx axis, r is the norm of the projection
of the k-point in a normalized ky-kz plane, and θ ∈
[0, 2π].

The particular symmetry of this case makes convenient
to introduce annular k-cells of the form Cα = [ua, ub]×
[ra, rb] × [0, 2π], related to the cylindrical geometry of
the problem, and which look like rectangular cells on
the (u, r, θ)-space. Consider Figure 9, in which three

neighboring k-cells are shown: Cα, Cα (inferior to Cα
in Fig. 9), and Cα (superior to Cα in Fig. 9), as seen
when projected in the (u, r)-space. Since in this case the
1D electric field is parallel to the kx-axis, the transport
term then reduces to:

Fig. 9. Cell Cα, and neighbor cells Cα (inferior) and Cα (superior),
projected in the (u, r)-space

− q
h̄
E ·
∫
∂Cα

f(t,x,k)n dσ = − q
h̄
Ex

∫
Cα

∂f

∂kx
dk

= − q
h̄
Ex k

2
∗

∫ 2π

0

dθ

∫ rb

ra

dr

∫ ub

ua

du
∂f

∂u
r

= − q
h̄
Ex k

2
∗

∫ 2π

0

dθ

∫ rb

ra

r dr
[
f̂(t,x,k)

]∣∣∣ub
ua

For the transport term due to −E above, the Numerical
Flux can be chosen according to the Upwind Principle.
The flux over the considered boundaries is then:

f̂(t,x,k)
∣∣∣
u=ua

=

{
fα(t,x) if Ex ≥ 0,
fα(t,x) if Ex < 0.

f̂(t,x,k)
∣∣∣
u=ub

=

{
fα(t,x) if Ex ≥ 0,
fα(t,x) if Ex < 0.
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