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Abstract— We present the Quantum Computer
Aided Design (QCAD) simulator that targets mod-
eling quantum devices, particularly Si double quan-
tum dots (DQDs) developed for quantum computing.
The simulator core includes Poisson, Schrodinger,
and Configuration Interaction solvers which can be
run individually or combined self-consistently. The
simulator is built upon Sandia-developed Trilinos and
Albany components, and is interfaced with the Dakota
optimization tool. It is being developed for seamless
integration, high flexibility and throughput, and is
intended to be open source. The QCAD tool has been
used to simulate a large number of fabricated silicon
DQDs and has provided fast feedback for design
comparison and optimization.
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I. INTRODUCTION

Semiconductor quantum dots for quantum infor-
mation processing have shown remarkable progress
[1], [2] in recent years. Sandia National Labora-
tories has been involved [3] in an effort that uses
Si-based DQD qubits for quantum computing. A
physics-based robust simulator capable of quantum
device modeling is vital to facilitate the experi-
mental development of this technology. There are
a number of challenges associated with modeling
realistic DQDs, i.e., the need to handle complex
geometries, many different device layouts, conver-
gence at low temperatures, and 3D quantum effects.
Existing commercial and academic TCAD tools
often handle one or two of these challenges but not
all of them. The Sandia Quantum Computer Aided
Design (QCAD) project is developing an integrated
tool that aims at addressing these challenges to
analyze and advance designs of DQDs used as
qubits, leveraging a number of Sandia-developed

software programs [4] including the Trilinos suite,
the Albany code, the Dakota toolbox, and the Cubit
geometry and meshing tool.

In this paper, we present the QCAD device sim-
ulator whose core includes Poisson, Schrodinger,
and Configuration Interaction (CI) solvers. It is
built upon the Trilinos and Albany projects, and
is interfaced with the Dakota toolbox. The simu-
lator is developed such that all components work
together seamlessly (high integration), and all core
solvers can be run individually or self-consistently
for 1D/2D/3D quantum devices made from multiple
different materials (high flexibility), while allowing
high simulation throughput due to distributed paral-
lelization and scripting. We intend to make the code
open source once it reaches maturity. By using the
QCAD simulator, we have been able to perform a
large number of simulations for many experimental
DQDs, and have provided fast feedback regarding
which device layouts are more likely to lead to few-
electron behavior (critical for qubit operation). We
can also investigate quantum confinement effects on
device characteristics with the quantum solvers.

The QCAD framework and its core solvers are
described in Section II. Some simulation results of
quantum dots are shown in Section III demonstrat-
ing usage of the QCAD simulator, followed by a
summary in Section V.

II. THE QCAD FRAMEWORK

The QCAD software framework is given in
Fig. 1. The base of the framework is Trilinos [4],
an open-source suite consisting of mathematical
libraries (nonlinear and linear solvers, precondi-
tioners, eigensolvers, etc.), discretization utilities,
an automatic differentiation library, distributed par-
allel toolkits, and many more packages (refer to
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Fig. 1. Diagram of the QCAD software framework

trilinos.sandia.gov for details). The Albany code
provide a unified and flexible interface to those
Trilinos packages to minimize the coding effort for
users developing physical models.

The QCAD core contains nonlinear Poisson (P),
effective-mass Schrodinger (S), and CI solvers.
These solvers can be run individually or com-
bined in a self-consistent manner. The Poisson and
Schrodinger solvers can be coupled self-consistently
to obtain single-particle envelope wave functions
and energy levels. The P-S solution can be used
as an eigenbasis for the CI solver which is then
coupled with the Poisson solver. This self-consistent
P-S-CI description produces the accurate many-
particle wave functions and energies within the
effective mass approximation, which are important
in quantitative study of few-electron DQD behav-
ior. Some details about the Poisson, Schrodinger,
and self-consistent P-S solvers are described in the
following subsections, while the self-consistent P-
S-CI description will be given elsewhere, and the
CI method can be found in Ref. [5].

Outside the QCAD core is the Dakota driver
which repeatedly calls the QCAD executable to
perform specified optimization tasks. Dakota [4]
is an open-source tool which provides nonlinear
least square optimization, parameter studies, and
uncertainty quantification.

A. Poisson and Schrodinger Solvers

The well-known Poisson equation in a semi-
conductor is given by
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The hole and electron concentrations, p(¢) and
n(¢), are related to the electrostatic potential ¢
through carrier statistics. Both Maxwell-Boltzmann
and Fermi-Dirac statistics are implemented in
QCAD. At low temperatures (below 4K) the in-
complete ionization of dopants is incorporated [6]
by including only the ionized concentrations on the
right-hand-side of (1).

The equation is discretized by the finite element
method and solved by the Newton nonlinear solver
embedded in Trilinos. Three types of boundary
conditions are considered [6], i.e., flux conservation
between different materials (continuity of €,V - n
across material interfaces), Neumann, and Dirichlet
conditions. This nonlinear Poisson solver provides a
semiclassical Thomas-Fermi description of the elec-
trostatics in quantum devices which in many cases
has proven sufficient to understand the behavior of
real DQDs.

The time-independent effective mass Schrodinger
equation takes the form of

2
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The Schrodinger equation is discretized by the finite
element approach and the resulting eigenvalue prob-
lem is solved using a Trilinos eigensolver package
called Anasazi. The equation is solved with closed
boundary conditions, i.e., 1 = 0 on Dirichlet bound-
aries, Té V4 -n = 0 on Neumann boundaries, and
75* V1 - n is continuous across material interfaces.

B. Self-Consistent Poisson-Schrodinger Solver

In realistic quantum devices such as DQDs, we
can divide the entire structure (relatively large) into
semiclassical and quantum regions. In semiclassi-
cal regions, solving the nonlinear Poisson equation
alone is often sufficient; whereas in quantum re-
gions, the Poisson and Schrodinger equations need
to be coupled self-consistently for electrons (we
focus on electrons only as they are used for qubit
operation).

To couple the two equations, the electron concen-
tration n(¢) in (1) becomes n(¢, E;,1;), where E;
is the ith eigen-energy and 1; is the corresponding
1th envelop wave function. The general expression
is given by n(¢, E;, ;) = >; Ni|:|?, where the
N; term takes different expressions depending on
confinement dimensionality [6].
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Fig. 2. Aj-valley lowest four subband wave functions and

energies in a 1D MOS capacitor at T = 50 K and Vg = 3
V obtained from QCAD (a) and from SCHRED (b). The solid
and dashed curves are obtained without and with the exchange-
correlation effect, respectively. Also shown are the subband
energies in [meV] (referred to Fermi level) with the exchange-
correlation effect.

The potential energy V' in (2) becomes a function
of ¢ and n and takes the following form,

V(¢7 n) = Eref - X Q¢ + Vwc(n)a (3)

where E,.. is a constant reference energy, x is elec-
tron affinity, and V,.(n) is the exchange-correlation
correction due to Pauli exclusion principle in real
many-electron systems. For the V.(n) term, we
implemented the well-known parameterized expres-
sion by Hedin and Lundqvist [7].

The self-consistency of the two equations is
achieved by using an efficient predictor-corrector
scheme [8]. This scheme is extended [6] to any
1D/2D/3D-confined quantum structure. The self-
consistent P-S solver currently solves the conduc-
tion As-valleys only in silicon devices (whose prin-
ciple axis is perpendicular to the Si/SiO2 interface)
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Fig. 3. (a) Top view of the depletion gate pattern in a Si DQD.
(b) Top view of electron density at the Si/SiO2 interface (T =
0.2 K). The gate voltages that meet the optimization targets are
AG =348 V, TP =-0.74 V, CP = -0.007 V, LP = RP = -5.95
V,L=R=-1.15V, LQPC = RQPC = -2.41 V.

due to their lower energy and the targeted low-
temperature applications.

To validate the P-S solver, we performed simu-
lations on a 1D MOS capacitor with 4-nm oxide
and 5e17 cm™3 p-substrate doping. The Ap-valley
lowest four wave functions and energies in the
capacitor between QCAD and SCHRED [9] are
compared in Fig. 2. The results produced by the
two tools show excellent agreement.

III. APPLICATION OF QCAD SIMULATOR

The Dakota driver component of QCAD (com-
piled into the QCAD executable) enables optimiza-
tion of gate voltages for simultaneous targets that
are likely to lead to few-electron quantum dots.
Fig. 3(a) shows a top view of the polysilicon deple-
tion gate pattern (transferred from a SEM image) in
an experimental Si DQD. Fig. 3(b) shows a top view
of the electron density at the Si/SiO2 interface under
one optimization scenario, where the depletion gates
(TP, CP, LP tied to RP, L tied to R, LQPC tied to
RQPC) and top Aluminum gate AG (not shown)
voltages are allowed to vary, so as to obtain one
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Fig. 4. (a) Electron density in a Si single quantum dot at T = 4
K obtained from the self-consistent Poisson-Schrodinger solver.
The indicated voltages are experiment operating values. The z =
0 surface is the Si/SiO2 interface where the interface charge is
used as a tuning parameter to obtain integrated electron density
equal to one. The dash white box denotes the quantum region
where the self-consistent solver is applied and the semiclassical
Poisson solver is used in the rest of the device. Also shown is
the electron density in the z = -2 nm surface where it shows
peak values. (b) The lowest two wave functions and energies
(referred to Fermi level) in the quantum dot at the z = -2 nm
surface.

electron (integrated electron density close to one)
in the left dot and simultaneously turn on the left
tunnel barrier (LTB in the figure), dot barrier (DB),
and left QPC barrier (LQPCB). The gate voltages
that meet these optimization targets are given in
the caption of Fig. 3. Locations of tunnel barriers
(LTB, DB, LQPCB, etc.) are dynamically detected
through saddle-point-searching algorithm similar to
the Nudged Elastic Band approach [10].

We have performed optimization simulations on
dozens of existing (fabricated) and proposed DQD
designs. These optimizations have been able to help
answer three DQD design questions that are critical
in achieving few-electron DQD behavior: (i) which
devices allow one electron in each dot and also
simultaneous control of tunnel barriers; (ii) for a
given device, do tunnel barriers turn on before or
after a dot has many electrons; (iii) what are the
location and shape of the main dots and charge
sensing constrictions.

Using the self-consistent quantum models devel-

oped in QCAD, we can investigate effects of spatial
confinement in quantum devices. Fig. 4 shows the
electron density and wave functions in a Si single
quantum dot obtained from the self-consistent P-S
solver. It is seen that electron density peak is shifted
by about 2 nm away from the Si/SiO2 interface due
to spatial confinement and the electron is confined
in the dot region.

IV. CONCLUSION

In summary, we have described the development
of the QCAD program that has become a versatile
tool for simulating multi-dimensional quantum de-
vices. QCAD simulations of realistic DQDs allow
fast and valuable feedback to accelerate the experi-
mental development of few-electron quantum dots.
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