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Due to the proliferation of wireless and other RF applications, noise simulation has 
become an important topic of TCAD. Although the so-called physical Monte Carlo (MC) method 
inherently contains electronic noise, this time-domain based method is far too slow for most 
noise calculations, which are performed in the GHz range or below, because the CPU time is at 
least inversely proportional to the minimum frequency investigated. On the other hand, the 
Langevin Boltzmann equation (LBE), which is the basis of the MC method. can be also solved 
directly in the frequency domain by other numerical methods, thus avoiding the CPU time 
increase at low frequencies. This is demonstrated for the first time in this paper. 
The steady-state distribution function and the small-signal Green's functions are expanded into 
Legendre Polynomials up to the nth order together with the LBE and the spectral intensity of the 
Langevin force, where the energy domain is discretized with finite differences. Electron transport 
in Si is modeled with Jacoboni's anisotropic and nonparabolic six valley model, which can be 
easily extended to the case of strained Si and SiGe. 
In Fig. 1 the longitudinal and transverse components of the diffusion tensor (rvvT) are shown for 
electrons in undoped Si at room temperature as a function of an electric field in the <loo> 
direction. This transport parameter, which is related to the noise source of the velocity 
fluctuations, contains the dyadic product of the velocity and therewith the Legendre polynomial 
of the second order. Thus, an expansion up to only the first order, as is often done, is not 
sufficient, and large errors are encountered when only the first order is considered (Fig. 1). On 
the other band, expansions higher then the third order yield only negligible improvements (not 
shown) and good agreement with MC results is obtained already with the third order expansion. 
In Fig. 2 the spectral intensity of the velocity fluctuations is shown for OHz, and the differences 
between first and third order expansions are astonishingly small. Larger differences are found for 
higher frequencies (Fig. 3). Again, excellent agreement with MC results is obtained. In Fig. 4 the 
spectral intensity of the cross correlation of energy and velocity fluctuations is shown, where the 
imaginary part vanishes for small frequencies. Such quantities are notoriously difficult to 
evaluate by MC simulation. The MC CPU time increases roughly by a factor of 1000 for a 
decrease in frequency by IO. Therefore, at frequencies below ahout IOOGHz the presented 
numerical approach is many orders of magnitude faster than MC. But even for the data shown in 
Fig. 3 the CPU time of the numerical solver is about 100 times lower than MC. In devices, where 
slow processes like generationhecombination are important, the new numerical approach is the 
only feasible way to solve the LBE in the RF range or below. 
Conclusions: We have presented the first numerical solver for the LBE in the frequency 

domain, which was successfully verified by comparison with MC results. It  was found that noise 
calculation requires a Legendre Polynomial expansion up to the third order. Nevertheless, the 
new method is orders of magnitude faster than corresponding MC simulations. 

A full journal publication of this work will be published in the Journal of Computational Electronics. 
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Fig. I Longitudinal and transverse diffusion 
constant obtained by first and third order 
Legendre Polynomial expansions. 
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Fig. 3 Spectral intensity of the longitudinal 
velocity fluctuations for an electric field of 
30kVicm and undoped Si. 
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Fig. 4 Real and imaginary part of the 
spectral cross power of the longitudinal 
velocity and energy fluctuations for an 
electric field of 30kV/cm. 
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Fig. 2 Spectral intensity of the longitudinal 
velocity fluctuations for an n-type doping of 
10'4/cm' and 1017/cm3 at OHz. 

A full journal publication of this work will be published in the Journal of Computational Electronics. 

23 


