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1. Introduction 
Recent fascinating progress in fabrication techniques has made it possible to construct 

very small device structures. Investigations of hot carrier transport in such small de- 
vices are usually based on the semi-classical Boltzmann transport equation (BTE). As 
the electron energy increases, however, the mean free time between two successive scat- 
terings with phonons becomes comparable to  the collision duration time, defined here as 
the characteristic time required to build up the energy conserving delta-function in the 
collision term (M hundreds fs), so that the energy broadening associated with such small 
time scale is no longer negligible [collisional broadening (CB)]. In addition, since the wave- 
vector (momentum) of an electron is not a good eigenstate of the total Hamiltonian, the 
electron state continuously changes during collision duration [intra-collisional field effects 
(ICFE)].[l] Therefore, these quantum effects could be important in deep submicron de- 
vices in which the mean free time of hot electrons could be less than 100 fs and a quantum 
kinetic transport equation (QTE) should be used to analyze hot carrier problems. 

In the present work, a QTE which takes the aforementioned quantum effects into 
account is derived from the quantum Liouville equation. A new-simple strategy for incor- 
porating the energy broadening associated with finite collision duration (CB) is suggested 
to generalize the conventional Monte Carlo simulations. 

uantum kinetic equation under strong electric field 
The microscopic behavior of the entire system of electrons and phonons under an 

electric field is completely described by the quantum Liouville equation. Here, we give 
just an outline showing how to derive the QTE. The details will be reported somewhere. 

By employing the projection technique, [a] by which the variables of the reservoir 
(phonon bath) can be eliminated, we obtain the exact QTE for the electron subsys- 
tem. The collision term of this QTE contains the complete history of electron dynamics. 
To simplify the collision term, we make the Born approximation. The Born approxima- 
tion physically corresponds to the lowest order correction and ignores the higher order 
contributions such as the multiple scatterings. We then obtain the following QTE: 

where f k ( t )  is the electron distribution function with momentum k at time t ,  hdq the 
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coupling constant with phonons, F the uniform electric field, Nq the phonon occupation 
number, A, = €k-q - €k - qwq (€k: the electron energy; wq: the phonon energy) and 
a = e (9: the phonon wave-vector; m: the electron effective mass). f i  is taken to  be 
unity throughout this work. To be consistent with the Born approximation, the upper 
bound of the time integration in Eq.(l) is replaced by the free-flight time T,,. Since the 
electron distribution would not change significantly during the time interval T,,, we may 
approximate fk+FT(t - T )  to fk(t) .  These are the essential steps taken in this work and 
are what differentiates it from previous treatments given in [3]. It is not consistent with 
the Born approximation to integrate over the whole time range without taking the time 
dependence of the electron distribution into account. 

In the following discussions, we restrict ourselves to the CB and ignore the electric 
field (ICFE) in the right-hand side (rhs) of Eq.(l). This may be justified when the electric 
field is not extremely large, i.e., F is greater than a few tens kV/cm.[4] Equation (1) then 
reads 

where the first and second terms of the rhs are the out-scattering and in-scattering terms, 
respectively. Notice that Eq.(2) is very similar in form to the conventional BTE, the 
only difference being that the retardation associated with collision duration is explicitly 
included in Eq.(2) as a function of free-flight time T,, between two successive scatterings. 
If the retardation is ignored, which corresponds to taking the limit of r,, + m, the usual 
energy-conserving delta-function recovers. Therefore, the retardation due to collision 
duration broadens the electron energy which is otherwise strictly conserved. 

According to our previous study, the energy broadening has negligible effects on the 
out-scattering term whereas the in-scattering term is greatly affected. [5]  This allows us 
to ignore the broadening in the out-scattering terms and to sum all those terms. Conse- 
quently, a standard numerical technique such as the Monte Carlo method can be employed 
to numerically evaluate Eq.(2). The only modification required is that the final energy of 
electron after scattering has to be determined with a proper probability function whose 
width is roughly given by 1 / ~ , ~ .  The way that the electron lifetime is introduced during 
simulations is different from the previous treatments in which the electron lifetime is es- 
timated from the self-energy before the simulations by assuming that the whole system is 
in thermal equilibrium. 

3. Numerical calculation results 
For numerical evaluations, we employ the material parameters of GaAs (m  = 0.067mo 

and wq = 36 meV) and assume deformation-type scatterings for simplicity. The coupling 
constant (D = 3 x lo9 eV/cm) is chosen so that the magnitude of the total scattering rate 
at the energy ranges considered here is similar to that of the Frohlich scattering ( M  1013 

We first show the onset of energy broadening by considering a system where electrons 
are excited with 150 meV at t = 0 and relax to their steady state under a uniform 
electric field. Figure 1 shows the time evolutions of the electron energy distribution 
after photo-excitation under F = (a) 0 and (b) 1 kV/cm. When no electric field is 
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applied, the shape of the energy distribution differs greatly for the two cases of with and 
without energy broadening. Therefore, even for a moderate scattering rate (RZ 1013 l / s ) ,  
transport is already in the CB regime and standard approximations leading to the Fermi 
golden rule break down. Nevertheless, application of moderately strong electric fields 
greatly suppresses the phonon emission and absorption peaks and leads to results which 
are almost identical to the semiclassical results obtained from the Fermi golden rule. 

Figure 2 shows the energy distributions under steady state regimes for F = (a) 10 and 
(b) 50 kV/cm. When the strength of the electric field is large, the energy distribution 
obtained with energy broadening deviates from the one with no broadening; the high 
energy tail is more enhanced. This can be understood from the fact that the density of 
state is proportional to and thus a high energy state is more often selected as a final 
state during simulations. This result is consistent with those obtained previously from 
other treatments of CB.[3] Figure 3 shows the average energy and drift velocity plotted 
as a function of the electric field. Because of the enhancement of the high energy tail, the 
average energy becomes larger as the electric field increases; the deviation between the 
two cases, with and without energy broadening, becomes significant when electric field is 
very strong (2 a few tens kV/cm). On the other hand, the drift velocity shows no signif- 
icant difference within the range of numerical fluctuations in both cases. This is because 
the coupling constant for the deformation-type scattering has no wave-vector (direction) 
dependence and, therefore, the final state after scattering is directed at random. 

A quantum kinetic equation which incorporates the ICFE and CB has been derived 
from the quantum Liouville equation by the projection technique. A new simple strat- 
egy for incorporating the energy broadening associated with finite collision duration has 
been introduced to generalize conventional Monte Carlo simulations. It has been shown 
that even for a moderate scattering rate (z l /s) ,  transport is already in the CB 
regime and standard approximations leading to the Fermi golden rule break down. It is 
expected, therefore, that the use of the QTE is crucial in analyses of the device transport 
characteristics in deep submicron regimes, where the scattering rate of electrons in the 
high energy tail easily exceeds 1013 l /s .  
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Fig.1. Time evolutions of the electron energy distribution; t = 0.1, 0.5, 1, and 5 ps . The excitation 
energy is 150 meV and the electric fields of F = (a) 0 and (b) 1 kV/cm are applied. The solid (dotted) 
curves represent results with (without) energy broadening. 
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Fig.2. Electron energy distributions in a steady 
state at T = 300 K for F = (a) 10 and (b) 50 kV/ 
cm. The solid (dotted) curves represent results 
with (without) energy broadening. Note that the 
energy scale is different for (a) and (b). 

Fig.3. (a) Average electron energy and (b) drift 
velocity as a function of electric field for T = 10 
and 300 K. The solid (open) circles represent 
results with (without) energy broadening. 
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