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1. Introduction. A correct simulation of the switching performance of semiconductor devices is becoming 
increasingly important in several fields of application. An important case is for example that of power devices, 
where large amounts of current are involved in driving reactive loads and the influence of parasitic effects should 
not be disregarded. A typical feature in the devices’ switching behaviour is the coexistence of different time 
constants. In a power device this is true even when neglecting the surrounding circuit elements, because the sizes 
of the active zones may differ significantly from each other. Hence, when turning to the problem of numerically 
solving the system of PDE’s describing the device’s behavior, possibly coupled with those of the circuit elements, 
the choice of the solution method for the time dimension becomes very critical. The main purpose of this paper 
is describing the choice and successful application of a class of methods which have originally been devised for 
modeling, e.g., vehicle dynamics, circuits, or chemical reactions but,  a t  least in the authors’ knowledge, have not 
been used in the field of device analysis. They will be referred here as Rosenbrock-Wanner (ROW) type methods. 

2. Theory. Formally, the PDE’s describing the time-dependent semiconductor devices’ behavior constitute a 
differential-algebraic system. Referring for instance to the well-known drift-diffusion model, the differential part is 
made of the two continuity equations for electrons and holes, while the algebraic part is Poisson’s equation. After 
the spatial discretization has been performed and the boundary conditions have been imposed, the structure of 
the system turns out t o  be y = f(y , z) ,O = g(y , z )  . In our case, vector y = y ( t )  is made of the values n, , p i ,  
of the electron and hole concentrations at the nodes of the discretization grid, while vector z = z ( t )  is made of 
the nodal values of the electric potential. Given consistent initial values yo = y ( t 0 )  , zo = z ( t o ) ,  the extension 
of the ROW method to  the solution of the differential-algebraic system is achieved by embedding the algebraic 
part as ~g = g(y ,z )  and then considering the limiting case E --+ 0 .  The details are given, e.g., in [1,2], along 
with the determination of the stability properties. Only the general form of the ROW iteration of order s is 
reported here, that  is y(t0 + At)  = yo + c,k, ,  where c, are fixed coefficients and k,(At) are found by a 
modified, semi-implicit Runge-Kutta procedure. What must be stressed here is that  this approach leads to a 
class of discretization methods which are essentially different from the standard ODE ones, and exhibit the rather 
promising feature of yielding a semi-implicit structure while keeping the stability properties of the implicit ones. 
Hence, it is worth investigating the performance of the extended ROW methods and carrying out some comparison 
with those used so far. 

, 

3. Implementation. The implementation of the ROW scheme has been carried out in the twc+dimensional, 
drif-diffusion version of the in-house developed code BFIELDS. In the standard version, the time discretization in 
HFIELDS is achieved by means of the backward-Euler (BE) method. During the solution the code automatically 
selects the subintervals At of the prescribed time window(s) AT using a criterion based on the local truncation 
error. The  application of the BE method a t  some t gives rise to a non-linear algebraic system, whose solution 
provides the unknown vectors y , z a t  t + A t .  To avoid a new factorization of the system matrix a t  each At , the 
Jacobian matrix is kept unmodified for a number of consecutive At’s and a suitable damping procedure is used 
in the RHS (because of the damping more than one evaluation of the RHS per At is needed in the average). The 
number of Newton iterations is further decreased by means of a projection scheme. Thanks to the above, the 
number of factorizations over the time windows is reduced in the average with respect to  the number of solutions 
of the algebraic system, yielding a corresponding reduction in the overall computation time. Turning now to 
the ROW method, it will be shown below that its application brings a significant improvement in the solution 
speed with respect to  the standard one, despite of the refinements which have been incorporated in the latter. 
The improvement is achieved by tackling directly the most expensive point of the procedure, i.e., the number 
of factorizations. In fact, the semi-implicitness of ROW makes one factorization per At sufficient. The ROW 
method used here is that  of order 1, to  be readily compared with the BE one since their precision is the same 
(i.e., order 1 in the time discretization). I t  is worth adding that both methods could be improved by introducing 
an iterative solver, especially in three-dimensional problems where the number of unknows is very large; on the 
other hand the number of time steps, hence the gain in the number of factorizations, would not be affected by 
this in either the BE or the order-1 ROW method. 

4. Experiments and Resu l t s .  The  ROW method has been tested on the transient behaviour of a realistic 
power B J T  131. A 1-ym, constant device width was assumed, and the emitter and collector voltages VE and 
VC were set at 0 and 1 VI respectively. The base voltage VB , starting from a steady-state condition, was first 
switched from 0 to 1 V a t  t = 0 using a 1-psec linear ramp, was kept a t  1 V for 5 psec, then switched back to 
0 V in 1 psec, and finally left there for 5 more psec. The corresponding collector current IC is shown in Fig. 1, 
where the continuous lines refer to BE and the dots to  ROW. The negative value of IC at very small t is due 
to  the electrons injected into the collector to reduce the space charge at  the base-collector junction. In a very 
short time IC turns to  positive values as the base-emitter junction enters the forward regime. Then IC keeps 
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increasing until I’B is switched back to ground, which happens much before the steady-state condition is reached 
(this would take about 100 psec). It is seen that IC exhibits different time constants, related to  the progressive 
increase of the carrier population in the base neutral region and in the junction regions. Different time constants 
can also be seen in the finer detail of the inset of Fig. 1. The positive peak at  t = 5 psec is due to  the rebuilding 
of the space charge at  the base-collector junction, though its amplitude is different than at  t = 0 due to  the larger 
capacitance. Finally, IC decreases back to the reverse-bias value, again exhibiting different time constants. The 
final simulation time t = 10 psec occurs much before reaching the steady-state condition. 
As anticipated, the comparisons have been carried out using a ROW method of order 1, hence the total number 
of subintervals At was  found to be about the same. Each half of the Ic(t) curve of Fig. 1, made of one peak 
and a smoother portion, contributed about the same number of At , yielding 115 for the BE and 111 for the 
ROW method. However, while in the order-1 ROW method only one cycle factorization-RHS evaluation-solution 
is necessary a t  each At , hence the cycles amounted t o  111 as well, the BE method required 201 solutions with 
factorization, 334 solutions with no factorization (hence a total of 535 solutions), and 700 RHS evaluations. This 
rather simple example shows that an appreciable gain is already achieved by the ROW method of order 1, whose 
implementation is by the way easier than that of BE. Further improvements are expected, on one side, using 
higher-order ROW methods and, on the other, in situations where the high-curvature portions of the I ( t )  curves 
are much more numerous than in the example here. This case occurs, for instance, in oscillatory situations, typical 
of reactively-loaded power devices. To conclude, a time-discretization scheme has profitably been used in a new 
field of application, that of the transient simulation of semiconductor devices. As shown in the example presented 
here, its numerical accuracy compares quite well with that of the classical methods for ODE’s, while its efficiency 
is superior. Moreover, the new method keeps the stability properties of the implicit ones, and its implementation 
is straightforward. It appears therefore a promising technique, worth further investigation in the device and the 
mixed-circuit/device simulations. 
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