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1 Introduction 

A wide range of integrated circuit and packaging design problems require accurate estimates of the coupling 
capacitances and inductances of complicated three-dimensional structures. To perform the required electrostatic 
or magnetoquasistatic analyses, the most commonly used approach is to apply finite-difference or finite-element 
techniques to a differential problem formulation. However, finite-element techniques require that the entire 3-D 
volume be discretized, and generating such a volume discretization for complex structures can become cum- 
bersome. Instead, boundary or volume-element methods can be applied to solving integral formulations of the 
problem, in which case only boundary surfaces or conductor volumes need be discretized. Unfortunately, bound- 
ary and volume-element methods generate dense matrix problems which, if solved directly, grow in computational 
cost like n3, where n is the number of elements into which the problem is discretized. 

Recently, solving the dense matrices associated with boundary or volume-element methods has been made sub- 
stantially more efficient through the use of iterative solution techniques accelerated by “fast-multipole” algorithms. 
This combined approach reduces the computational cost (and storage) of using boundary and volume-element 
methods to nearly O(n). Below, we give a brief description of the multipole accelerated approach applied to 
electrostatic and magnetoquasistatic analysis. We then present results to demonstrate that  the method has 
nearly linear computational growth, and that on realistic problems the method can be more than two orders of 
magnitude faster than the standard direct factorization approach. 

2 Electrostatic and Magnetoquasistatic Formulation 

One formulation of the electrostatic problem is to solve for conductor-dielectric and dielectric-dielectric interface 
charge densities, denoted oc(t)  and od(~) respectively, given the conductor potentials. Then for any point x on 
a conductor surface, 

where S, and Sd are the conductor-dielectric and dielectric-dielectric interface surfaces and $(x) is the given 
conductor potential. Also, for any point I on a dielectric-dielectric interface, 

where n, is the normal to the dielectric interface, E ,  and are the permittivities of the corresponding dielectric 
regions, $+(z) is the potential at  t approached from the E ,  side of the interface, and t,h-(z) is the analogous 
potential for the b side [l]. 

To numerically compute 0, and ( T d ,  the conductor surfaces and dielectric interfaces are discretized into n = 
ne + nd small panels or tiles, with n, panels on conductor surfaces and nd panels on dielectric interfaces. I t  is then 
assumed that on each panel i, a charge, q i ,  is uniformly distributed. Finally, a system of equations is generated 
by insisting that (1) be satisfied at  the center of each conductor panel, and that (2) be satified a t  the center of 
each dielectric panel. This leads to a system of equations of the form, 
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where Pij and Eij are thie potential and normal electric fields a t  the center of panel i due to  a unit charge on 
panel j . 

In the case of magnetoquasistatic analysis, used for extracting inductances, the conductor current density, J, 
satisfies V . J = 0 and for any point z in the conductor, 

where here 4 is a scalar potential, U is the conductivity, p is the magnetic permeability, w is the frequency of 
interest, and V' is the conductor volume. 

To numerically compute J, the conductor volume is discretized into b filaments, and in each filament the 
conductor current is assumed constant. A system of equations for the filament currents, which are denoted by' 
the vector Ib, is then generated by insisting that a t  filament intersection points, the directed sum of currents 
associated with the intersecting filaments is zero. In addition, the filament currents must satisfy 

zzb = ( R +  jwL) Ib  = &, (5) 

where &, Ib E Cb, b is the number of branches (number of current filaments), Z E Cbxb  is the complex impedance 
matrix, R E S b x b  is the diagonal matrix whose elements are associated with the dc resistance of each current 
filament, and L E Sbxb is the dense matrix of partial inductances [2]. Specifically, 

lj(Xi). lj(X.) ' L~~ = J 1 ' d3tid3xj, 
4r filament, ilamentj IXi - Xj I 

where Xi, Xj E S3 are the positions in filament i and j respectively, and &,lj  E 
direction of current flow in filaments i and j .  

are the unit vectors in the 

Using mesh analysis, it is possible to combine the current conservation constraint with (5) to  yield 

MZM'Z, = v, (7) 

where Zm E Sn is a vector of mesh currents, M E Pxb is the mesh matrix, V, is the mostly zero vector of source 
voltages, and n is the number of meshes. 

3 The Multipole- Accelerated Approach 

If an iterative algorithm, typically GMRES [3], is used to  solve either (3) or (7), then each iteration of the 
algorithm will cost n2 operations. This is because the matrices in (3) and (7) are dense, and therefore evaluating 
candidate solution vectors involves a dense matrix-vector multiply. However, in both (3) and (7), multiplying by 
the associated matrix is equivalent to evaluting a potential at n points due to  n sources. This computation can 
be performed in order n Operations using the fast multipole algorithm [4]. 

As a brief explanation of how the fast multipole achieves such efficiency, consider two configurations, depicted 
in 2-D for simplicity, given in Figs. 1 and 2. In either figure, the obvious approach to  determining the electrostatic 
potential a t  the nl evaluation points from the n2 point-charges involves nl * 712 operations; at each of the n i  
evaluation points one simply sums the contribution to  the potential from n2 charges. An accurate approximation 
for the potentials for the case of Fig. 1 can be computed in many fewer operations using multipole expansions, 
which exploit the fact that r >> R (defined in Fig. 1). That  is, the details of the distribution of the charges 
in the inner circle of radius R in Fig. 1 do not strongly effect the potentials a t  the evaluation points outside 
the outer circle of radius r. It is also possible to compute an accurate approximation for the potentials at the 
evaluation points in the inner circle of Fig. 2 in many fewer than n l *  n2 operations using local expansaons, which 
again exploit the fact that r >> R (as in Fig. 2). In this second case, what can be ignored is the details of the 
evaluation point distribution. 
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Figure 1: Exploiting charge clusters using multipole 
expansions. 

n, evaluation points \ 

Figure 2: Exploiting evaluation point clusters using 
local expansions. 
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Figure 3: Half of a pin-connect structure. Thirty-five 
pins shown. 

Figure 4: CPU times (IBM RS6000/540). 

4 Results 

In this section, we present results from the multipole-accelerated electrostatic and magnetoquasistatic analysis 
programs FASTCAP2 [5] and FASTHENRY (61. To begin, consider a typical industrial example, a 35-pin package 
shown in Figure 3. The cost of computing the associated inductance matrix using direct factorization, GMRES, 
and multipole-accelerated GMRES, as a function of discretization refinement is show in Figure 4. Note the for a 
10,000 filament discretization, which is barely sufficient to properly model finite penetration depth and proximity 
effects, the multipole accelerated algorithm is two orders of magnitude faster than direct factorization, and an 
order of magnitude faster than explicit GMRES. 

For the example package, the mutual inductance between pins 1 and 2 (labeled clockwise from the right) is 
much larger than the mutual inductance between pins 1 and 35. To show that the approximations used by the fast 
multipole algorithm are sufficiently well-controlled to make it possible to accurately compute the small coupling 
inductances, consider the results in Table 5. The mutual inductance between pins 1 and 35 is more than two 
orders of magnitude smaller than the mutual inductance between pins 1 and 2, yet the solution computed using 
the multipole-accelerated algorithm is still within one percent of the solution computed using direct factorization. 

The connector problem in Figure 7 and the DRAM cells in Figure 8 are examples of structures that can be 
analyzed with FASTCAP2, which uses a multipole-accelerated boundary-element method. For the connector, the 
U-shaped polyester body has a relative permittivity of 3.5. Note that for the DRAM cells, the dimples in the 
ground plane below the bit line v ia s  model the drain to substrate capacitors. Also, the upper aluminum word 
lines are covered with a silicon nitride passivation layer with relative permittivity 7.0. Below the passivation layer 
is silicon dioxide, with relative permittivity of 3.9. 
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DRAM Connector 
cond. panels 4881 6464 

1248 3060 dielec. panels 
total panels 6129 9524 
FASTCAP2 CPU minutes 17 30 

pin pair direct gmres multipole 
1 to 2 3.0107e-02 3.0106e-02 3.0082e-02 
1 to 35 2.0847e-04 2.0838e-04 2.0678e-04 

Figure 5: Inductance accuracy comparison. Direct CPU minutes (1300) (4900) 

Figure 6: CPU times (IBM RS6000/540). Times in 
parentheses are extrapolated. 

Figure 7: A backplane connector example. Figure 8: Neighboring DRAM cells. 
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