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The Monte Carlo method is a well established approach for the statistical solution of the Boltz- 
mann transport equation in semiconductors [l, 21. As device dimensions are reduced, it is important 
to account for hot electron effects, responsible for overshoot phenomena and reliability problems 
like breakdown due to impact ionization, defect generation, and injection into gate oxides. In some 
cases, hot electron effects can be used in a controlled fashion to generate useful device functions, as 
is the case of floating gate memories. Reliable models for the simulation of advanced MOS struc- 
tures must include the complete details of the bandstructure and accurate models for scattering 
rates at high energies, as well as a self-consistent treatment in order to evaluate appropriately the 
space-dependent carrier distribution function. 

Applications of full-bandstructure Monte Carlo approaches to realistic geometric structures 
have become feasibile only very recently, thanks to the advances in supercomputers and high end 
workstations. An example is the simulator DAMOCLES [3,4] developed at IBM, Yorktown Heights. 
The ongoing goal of our work is to develop a hierarchy of models, where the features of the band 
structure in the high energy range can be introduced with increasing complexity, so that full 
device investigation may be practical. The most complete model in the hierachy includes a full 
k-dependent description of the scattering rates. The computational requirements are enormous 
and todate such an approach is practical for the investigation of bulk phenomena. Applications 
on massively parallel computers could be a solution to make this approach more viable in the 
future for full device simulations. A step below in the hierarchy is a model where scattering rates 
only depend on energy. The main difference of this model with respect to traditional Monte Carlo 
approaches, with an analytical bandstructure formulation, is in the use of the full bandstructure to 
calculate numerically the particle trajectories in momentum space and to determine the final state 
after scattering. 

This talk will introduce the issues related to practical Monte Carlo simulation of silicon devices, 
using a full bandstructure approach, and will discuss the implementation and representative results 
of a self-consistent simulator based on energy dependent scattering rates. 

e Monte Carlo Model 

The knowledge of the band structure is necessary in order to solve the equations of motion 

- dr = fiVkE(k) 1 
dt 
dlc eF(r) 
dt - f i  
- - -  

where r is the electron’s position, k is the electron’s wave vector, E ( k )  is the energy, F(r) is the 
local electric field, and e is the elementary charge. The band structure gives detailed information 

36 



on the energy and velocity of the electron as well as the correct density of states. 
In typical Monte Carlo simulators, the non-parabolic approximation is used to describe Si 

where mo is the free electron mass, mi is the effective mass in the ith direction, E is the energy, 
and a is the non-parabolicity factor. Using the Herring-Vogt transformation [5], the ellipsoidal 
isoenergy surfaces are transformed into spherical ones. This approximation is only valid near the 
bottom of the valley for a single band. 

For high energy transport, the non-parabolic approximation does not adequately describe Si. 
First, the second conduction band is degenerate with the first conduction band at the X point 
with an energy of approximately 130 meV. Second, at higher energies, the band structure of Si just 
cannot be described by such a simple expression (for example, at the I' point). 

In our simulator, the band structure for Si is calculated using the empirical pseudopotential 
model of Cohen and Bergstresser [SI. The energy and gradient (for the calculation of velocity) is 
calculated for the k points inside the irreducible wedge of the Brillouin zone (BZ), described by 

Using the symmetry properties, each point in the BZ can be mapped into the irreducible wedge. 
Our Si model includes the following phonon scattering mechanisms: intravalleJy acoustic phonon 

scattering, F and G type X-X intervalley phonon scattering, X-L intervalley plhonon scattering, 
ionized impurity scattering, and impact ionization. Ridley's statistical screening is included in the 
ionized impurity scattering [7]. Finally, the total scattering rate is adjusted so that at high energies, 
it follows the total density of states [8]. 

Simulations 

The initial electron distribution in real space is taken to be proportional to the doping concen- 
tration of each region. Thermal equilibrium is assumed for the initial k-state distribution. The 
random time of flight for the electrons is generated using the modifled constant time technique 
(MCTT) [9]. 

At the beginning of every iteration, the electron density in real space is evaluated using a 
2D cloud-in-cell scheme [lo], and Poisson's equation is solved numerically using the Red-Black 
Successive Over Relaxation (SOR) method [ll]. Holes are included in the constant quasi-Fermi 
level approximation [3]. Dirichlet boundary conditions are imposed at the source, drain, gate, and 
substrate contacts, and von Neumann boundary conditions are imposed at the "floating" boundary 
regions of the device. Also, the boundary layer in the contacts are kept neutral by injecting the 
necessary number of electrons. The electrons are then allowed to fly ballistically, scatter, or cross 
region boundaries during a preset time interval St. This procedure is repeated1 until a specified 
convergence criterion is met. 

In Fig. 1 we show for demonstration some representative results of Monte Carlo simulations for 
a simple n-channel MOSFET structure, obtained with the full band model using energy dependent 
scattering rates. We assume a uniform acceptor doping IVA = 10'' cm-3 in the p-substrate and 
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contact regions with ND = 10’’ ~ m - ~ .  The number of simulated particles fluctuates in excess of 
15,000 according to the bias. Figure l(a) shows a portion of the I-V chmacteristics for a 1 pm 
gate device, which were obtained to check code calibration. These results are very close to drift- 
diffision solutions from . the PISCES IIB simulator. Fig. l(b) shows the deviation of the drain 
current from a linear scaling rule when the gate length is reduced. The potential profile in the 
conduction channel of a 0.25 p m  gate device, in Fig. l(c), shows that flat potentials are established 
in the contact regions. With a lower doping concentration in the contacts to reduce the number 
of simulated particles and computational cost, the simulation would yield fairly large fields in 
the contact regions. Figure l(d) shows the energy particle distribution, obtained at the channel- 
drain junction with the same structure and bias of Fig. l(c). The reference zero energy for all 
particles is the bottom of the X-valley. The ability to generate the electron distribution function 
is the main feature which distinguishes the Monte Carlo procedure over other established simulation 
techniques. All the examples shown were run on Hewlett-Packard 700-series workstations, requiring 
several hours per bias point, demonstrating that a full bandstructure Monte Carlo approach should 
be considered practical and affordable. 
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Figure 1. 

(a) I-V characteristics of a conventional 1 pm MOSFET. 

(b) Drain Current vs. the reciprocal of the channel length 1/L, with Vgs=2.5 V i " d  Vds=3.0 V. 
The dotted line is the linear extrapolation of the drain current. 

(c) Electrostatic potential profile of a 0.25 pm MOSFET in the channel. Vgs=2.'5 V, Vds=3.0 V 
and t0,=600A 

(d) Distribution of particles at the channel-drain junction for a 0.25 pm MOSFIET. Vgs=2.5 V, 
Vds=3.O V and t,=600A. 
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