
The Viennese T C A D System 
S. Selberherr 

and 

F. Fasching, C. Fischer, S. Halama, H. Pimingstorfer, H. Readt, 
H. Stippel, P. Verhas, K. Wimmer 

Institute for Microelectronics, Technical University of Vienna, Austria 

I ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA 

Abstract 
A new TCAD system is presented which is capable of performing complex development 
tasks by means of a powerful interaction language and an efficient database system. The 
integration of tools is supported by implementing it as a layered product. 

1 Introduction 

The demands on technology CAD (TCAD) range from simple simulator coupling to process 
and device technology optimization, e.g. [4]. Our system as shown in Fig. 1 is controlled 
through an interaction language based on a LISP interpreter, providing homogeneous in
tegration of the data, tool and task levels. 

2 The PIF Database and the AppHcation Interface 

The format upon which the Viennese TCAD system is built is an enhanced and extended 
iritertool mode of a widely used profile interchange format (PIF) proposed in [1]. The 
TCAD database is accessed from programs with the help of an application interface. Our 
implementation of this interface is strictly layered thus conforming to the most recent soft
ware engineering standards. A system layer at the very bottom is used to hide system 
specifics from the rest of the application interface. Thus the interface is open to all opera
ting systems and not restricted to UNIX. A caching /ayer implementing a segment-buffer 
caching algorithm sits on top of the system layer, which significantly enhances access speed 
and memory utilization. 1'he basic layer then is used to access primitive objects which hold 
jH-imitivc data types a.s w(;l! as efficiently compressed arrays. The interface layer deals with 
IMF objects which are made up of primitive objects. This interface layer is designed to 
work with C applications specifically designed for PIF. To provide a consistent interface to 

32 



PIF Database 

PIF Application Interface 

PROMIS 

MINIMOS 

VLSICAP 

PIF Toolbox 

TCAD Shell 

User Interface Agent 

• w 

1 i 
! 1 

o 

1 7 - = i u 
1, f ^ J 

Figure 1: TCAD System Overview and Layer Structure 

existing C and FORTRAN applications, an application layer has been designed which deals 
with all TCAD objects based on PIF. Therefore adding any new TCAD tool (simulator, 
measurement interpreter, correlator, etc.) is a simple and straightforward task. 

3 TCAD Tools 
Modules callable at the tool level include all kinds of simulators (process, device, intercon
nect), grid manipulators, discretizers, solvers, measurement data translators, optimizers, 
graphical editors, previewers, etc., some of which are incorporated in a PIF toolbox which 
also provides for intersite to intertool format conversion and vice versa. 

Presently the process simulator PROMIS, e.g. [3], the device simulator MINIMOS, 
e.g. [5], and the interconnect capacitance simulator VLSICAP, e.g. [6], have been integra
ted. New tools can be added very easily by replacing input and output functions with 
corresponding application layer functions (see below). This small change yet allows data 
level integration into the TCAD system. However, the full power of the system can be 
exploited if the new simulator is provided with a shell language interface which allows the 
required data to be passed in form of PIF object handles. Additional flexibility can be 
gained by splitting the simulator (e.g. separating grid generation, discretization and solver 
parts) and by combining the new modules with existing TCAD tools into task level pro
grams almost arbitrarily. To do so, the modules must adhere to a data format convention 

33 



[2]. The major advantage when building a new simulator is that it is no longer necessary 
to provide a specific grid generator, solver, etc., since these tools are readily available on 
the shell level. Therefore, simulator designers are able to concentrate on the specialized 
parts of simulator construction. The executable modules are usually small and can be run 
(in parallel) on different machines under control of the TCAD shell, thus yielding consi
derable speed improvement. When modularized appropriately, the most t ime consuming 
parts (e.g. linear solvers) can be executed on a supercomputer communicating with the 
TCAD shell running on a graphics workstation using our P IF linear solver communica
tions protocol [2]. 

4 The TCAD Shell and the User Interface Agent 
Modules or tools are directly callable a^ shell functions of the interaction language, thus 
enabling programs written in this language to call these tools. This structure allows arbit
rarily complex tasks to be performed, ranging from simply calling a single module inter
actively over coupling simulators via a shell function to running vv^hole optimization loops 
as background processes. Starting tools or shell functions on different machines is also 
possible (distributed processing). A major influence in the decision to use LISP as the 
interaction language is that there is no distinction between program and data structures. 
This allows, for example, a process flow representation to be either executed directly in 
the shell as a program, or to be stored in the database as data. 

A powerful extension is the User Interface Agent (UIA) which allows graphical control 
ol the TCAD system including editing, manipulating and viewing geometries, simulation 
results and symbolic process flow representations. In addition, the experienced user can 
directly use the shell language to create new functions or modify existing ones. The envi
ronment does not depend on the graphical interface which is inherently system dependent. 
It could as well be used without it (terminal capability is enough), although it is more 
convenient to use tlie UIA. Task level programs can be executed in both interactive and 
batch mode. An example of a task level program for minimizing the bulk current of a 
device by means of modifying the LDD implant dose is presented in Fig. 2. 

5 Future Plans 
Various popular simulators which have not been developed at our institute will be incor
porated into our system. Further emphasis will be laid on distributed computing within 
the 1'CAD environment. Establishing a link to horizontal layout design will make the 
TCAD framework complete, allowing all activities to be performed in a homogeneous, 
highly flexible and expandable environment for the process and device engineer. 

34 



;;; sample TCAD shell task level function 

(defun minimize-i-b (LDDimpl-dose obj-hdl) 

(run-minimos obj-hdl) 

(setq i-b-act 

(extract obj-hdl "BulkCurrent")) 

(do ((test-criterion i-b-act 

LDDimpl-dose obj-hdl)) 

(setq LDDimpl_dose 

(compute-new-dose i-b-act 

LDDimpl-dose obj-hdl)) 

(run-minimos obj-hdl) 

(setq i-b-act 

(extract obj-hdl "BulkCurrent")))) 

;;; sample usage - edit a geometry 

(setq obj-handle (ped)) 

; call the function 

(minimize-i-bulk 5el2 obj-handle) 

; the output i-bulk/i-drain ['/.] 

0.01132 

Figure 2: Sample TCAD function 

Acknowledgement 

Our work is sponsored by DIGITAL EQUIPMENT CORPORATION, Hudson - USA, 
SIEMENS CORPORATION, Munich - Germany, and SONY CORPORATION, Atsugi -
JAPAN. 

References 
[1] S. Duvall, An Interchange Format for Process and Device Simulation, IEEE Trans. 

CAD, Vol. 7, pp. 489-500, 1988. 
[2] F. Fasching et a/., Viennese Integrated System for TCAD Applications, Institute for 

Microelectronics, 1990. 
[3] G. Hobler et ai, RTA-Simulation with the 2D Process Simulator PROM IS, Proc. NU-

PAD III, pp. 13-14, 1990. 
[4] E.W. Scheckler et ai, A Utility-Based Integrated Process Simulation System, Symp. on 

VLSI Technology, pp. 97-98, 1990. 
[5] S. Selberherr, Three Dimensional Device Modeling with MINIMOS 5, Proc. VLSI Work

shop, pp. 40-41, 1989. 
[6] F. Straker et ai. Capacitance Computation for VLSI Structures, Proc. EUROCON, pp. 

602-608, 1986. 

35 


