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]n this paper we present the box method as a mixed finite element method with a suitable 
quadrature. This interpretation provides a way of defining a continuous current density 
for the box method. Also, in this way, higher order box methods can be derived which are 
suitable for application to the discretisation of the semiconductor device problem. 

Introduction 

The box method is the most widely used discretisation method for the semiconductor de
vice problem. The main recison for this is that it yields discrete current conservation and 
utilizes 'upwinding' by using the Scharfetter-Gummel expressions for the current densities. 
Another reason for its use is that solutions of the resulting discrete systems satisfy the 
maximum principle (positive carrier concentrations !) if the underlying triangular mesh 
is of Deiauney-type. A drawback of the method is that it does not yield a continuous ex
pression for the electric field and the current densities: only components along the edges 
of the meshes are given. Because of the latter, one could be tempted to think about the 
application of finite element methods to the discretisation of the semiconductor problem. 
Unfortunately, it is wellknown that ordinary finite element methods, although frequently 
used in other disciplines, do not possess any of the properties listed above (although 'up-
winding' can be achieved, for example, by using the streamline upwind methods proposed 
by Hughes and Brooks; cf. [1]). 
Recently, mixed finite element methods have been proposed for the discretisation of the 
semiconductor device problem (cf. [2]). These methods differ from ordinary finite ele
ment methods in several respects but, most importantly, they yield Scharfetter-Gumnriei 
type expressions for the current densities in a natural way and resulting solutions satisfy 
discrete current conservation. Unfortunately, the mixed finite element methods proposed 
have been shown to be rather unstable (cf. [3J). For example, the solution of Poisson's 
equation will lead to unphysical oscillations in the electric potential tp, even for trian-
gulations without any obtuse angle. The same holds for the solutions of the continuity 
equations whenever a non-zero recombination term is present. Furthermore, if obtuse 
angles occur, the method will always be unstable, even when the underlying mesh is of 
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Delauney-type. Although at tempts have been undertaken to remedy this situation (cf. [3j 
where quadrature rules are suggested, and [4] where new elements are introduced), the 
latter problem has not been resolved so far. 
In the following sections we present a class of mixed finite element methods which can be 
used on Delauney-type triangular meshes. The box method is shown to be equivalent to 
the lowest-order element in this class. Because of this, a recipe can be given for producing 
a continuous expression for the electric field and the current densities from the solutions 
obtained with the box discretisation. Furthermore, higher order extensions of the box 
method are immediate consequences of this new class of mixed finite element methods. 

Mixed finite element formulation 
of the semiconductor problem 

In this paper we consider the following system of equations: 

V - J - i ? ( u ) (1) 

J = a\7u (2) 

on the region Q C R^, with suitable boundary conditions. Remark that Poisson's equation 
as well as the continuity equations for holes and electrons can be written in the above form. 
The mixed variationalformulationof the problem (l)-(2) is: find (u, J ) G L'^{Q)xH{div;n) 
such that 

f j 4>V -3(10= I I (l>R{u)dO ^(peL^Cl) (3) 

f f a-^3-TdO= - f f uV • TdO Vr € H{div;n) (4) 

where 
H{div; n ) = {r € (L'^(n))2|V • r € L\n)} 

It is wellknown that the problem (3)-(4) has a unique solution (u, J ) G L^(n) x H{div;Q), 
which is the weak solution of {l)-(2). 
The mixed discretisation now consists of choosing suitable finite dimensional subspaces 
Vh C L'^(n) and W^ C H{div;Q) and to restrict the problem (3)-(4) to these subspaces: 
find {uh,3h) EVh xWh such that 

j I <f>^V-3hdO = jl^4>hR{u^)dO y4>keVh (5) 

j I a-'3h-T^dO = -1 j^Uf,V-Ti,dO \/T^,eW^, (6) 

The remaining problem is to construct suitable subspaces V^ and W^. The Brezzi-Babuska 
conditions (cf. [5]) give sufficient (but not necessary) conditions on these subspaces in 
order to guarantee uniqueness of the solution of (5)-(6). For triangular meshes, a class 
of finite element spaces have been proposed which satisfy these conditions: the so-called 
Raviart-Thomas elements (cf. [6]). The latter are widely used in the context of mixed 
finite element discretisations. 

] 7 5 



Equivalence of the box method and 
a low-order mixed finite element method 

In view of the foregoing we now assume that the region n has been triangulated and that 
the mesh is of Delauney-type. Because of the latter assumption we can associate, with each 
mesh point, a so-called 602: which is constructed by intersecting the midperpendiculars of 
the edges of the triangles. These boxes are sometimes termed the Voronoi polygons. Using 
these we construct a new triangulation ri;, of the domain Q: divide each of the Voronoi-
polygons into triangles in such a way that the vertices of these triangles are the centre of the 
polygon and two neighbouring extremal points on the boundary of the polygon. Thus, two 
of the three vertices of these new triangles are points of intersection of midperpendiculars. 
Figure 1 explains the construction graphically. 

New triangulation 

We now consider the mixed finite element method which makes use of the lowest-order 
RT-elements for the approximation of the fields and current densities on the triangulation 
Ylh, and of the piecewise constant approximations of the potentials on a box. In order to 
analyse this method, we introduce the following notation. For each mesh point {xi,yi) we 
let Bi be the box around it and Tj', k = 1, . . . ,n, the triangles of 11/, which are contained 
in Bi. Thus, we have that Uh = U, U^^ ĵ Tj". 
We define 

^h — {w/i is constant on each box} 

This space is spanned by the basis functions (^,, which are 1 on 5,- and 0 on all other 
boxes. Remark that these functions are not continuous over the box edges. Furthermore, 
we let Wh be the space of lowest-order Raviart-Thomeis elements on the triangles of 11^, 
i.e. Wh is the space spanned by the vector basis functions TJ, which have a constant normal 
component equal to 1 along edge j of a triangle in Tlh and zero normal component along 
each of the other edges. Thus, the support of TJ extends over two triangles. On each of 
these triangles, TJ is of the form 

in which {x,(y), y,fj)) is the vertex of the triangle T opposite the edge j , and Ij the length 
of edge j . 
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We will now show that the box method is equivalent to this mixed finite element method 
when a suitable quadrature is chosen. To this end, set up the mixed FEM equation of the 
form (5) for the box B,: 

W -JhdO - / / R[uh)dO (7) 
B, J JB, 

Using Green's theorem, the fact that u/, = u, on Bi, and the property of the lowest-order 
RT-elements that their normal components along an arbitrary line are constant, we obtain; 

^ / f j f ' ° " ' -•area(f i , ) i?(u.) (8) ik jk,out _ 

k=l 

where /* is the length of the edge of T^ which coincides with the outer edge of the box Bi 

and J, '"" is the normal component of J/, along that edge. 
Next we use equation (6) for the TJ which correspond to edges which coincide with the 
outer edges of B,. For each triangle T^ G Bi there is (except at the boundary) another 
triangle TJ^ G B,i which, together, form the support of TJ. Then we have: 

fL 
•{^i'<Vi') 1 , MV.i/,0 _ ,Xi + Xi~ yi + yi> f f 

- , • , / • n i / « ds}Jh{ , — ) • I ^JjdO 
dist{t,%') J(xi,yi) ^ 2 J yr*uT* 

The latter integral can be shown to be equal to 

±/j I Xi- - Xi \ 

3 \ y.' - y. j 

Since T̂ * and T,*' are congruent, it then follows that 

The treatment of the right hand side of (6) is slightly more complicated. Since the TJ 
have constant divergence on each triangle, we may replace the right hand side of the weak 
formulation: 

uV.rjd0^l^{u{zh-u{z^:)) fL T*ur.^ 

where z* and z^,' are the centres of gravity of T̂ * and T̂ * , respectively. Using interpolation 
we obtain: 

tiV • TjdO ~ ^ {u{xi, yi) - u{xi>,yi>)) 

Thus, the right hand side of (6) can be approximated by 

Combining the obtained approximations, we finally get: 

J(x,,y,) °- ^* 
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Equations (8) and (9) yield the box scheme discretisation ! Thus, we have shown that 
the latter can be obtained by approximating the integrals in the lowest order RT-method 
described above. 

Interpolations for the fields and current densities 
obtained using the box method 

The equivalence of the box method and a low-order mixed finite element method opens 
possibilities for obtaining expressions for the fields and current densities inside the elements 
(remember that the box method only provides components of these on the edges). We 
will describe two ways of doing this. 
We can use equations (5) and (6) for the test functions which have not yet been used in 
the above. More specifically: for each box 5 , , we can set up a system of n, equations for 
the n, remaining unknowns, namely the normal components of J/, along the inner edges 
of the box. In the resulting set of equations, the values of the components of J^ along 
the outer edges of B, occur, for which we can substitute expression (9), as well as the 
values u, which have already been determined. Remark that these calculations can all 
be done locally, i.e. this can be considered as a postprocessing exercise. Having obtained 
the values for the n, remaining unknowns for the box B,, we can give an expression for 
3h inside the box: thus we have produced an i7((f>t;; n)-function (with continuous normal 
components over the edges of the triangles T^*). This is important for adaptive runs, or 
for applications in which the fields and/or the current densities are coefficients in another 
equation (e.g. the temperature equation, or the hydrodynamic equations). In the lecture 
we will give an example of this. 
The method just described for obtaining the fields and current densities inside the box does 
guarantee current conservation on the boxes, but not on the triangles of IT ĵ. The latter 
can be achieved by considering a mixed finite element method on each box S, , in which 
we now introduce piecewise constant potentials on the triangles of H/,. Thus, there are 2n, 
remaining unknowns per box. In order to have a well-determined system of equations for 
these, we impose the extra restriction that the average of the newly introduced u* (value 
of potential on T *̂) is equal to the value u, calculated in the centre of the box: 

area{Bi) 

This second way of interpolating the results obtained by the box method does guarantee 
current conservation on the triangles of FI;,, and yields another approximation for the 
potentials. 

Higher order (box) methods 

In the previous sections we have shown how the box method may be considered as a mixed 
finite element method with a suitable quadrature rule. This can be exploited further to 
develop higher-order box methods: the spaces V^, and Wfi may be chosen to contain higher 
order basis functions. Because the space V^ will always contain the piecewise constant 
functions, current conservation is guaranteed for all higher order mixed FEM of this type. 
This will be discussed in more detail in the lecture. 
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