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Finite difference or finite clement methods are traditional numerical techniques for solving partial differ
ential equations in VLSI process simulation. Both of these approaches consume large CPU times due to fine 
spatial grids and small time steps required to achieve desired accuracy. In our opinion, the smooth impurity 
profiles in VLSI processes allow us to explore more numerically stable integral approaches to diffusion sim
ulation. In this paper we propose a numerically efficient yet physically accurate approach which we call the 
numerical integral method. This method is an extension of the boundary integral methods[I] to solve linear and 
nonlinear diffusion problems with physically-based diffusivity models to account for concentration-dependent 
efi'ects, oxidizing ambients effect, co-diffusion, etc. 

In this method, a partial differential diffusion equation is first transformed to an integral form by using the 
weighted residual techniques with a local weighting function which is related to both time and spatial domains. 
For a two-dimensional diffusion problem, the following integral form of the diffusion equation is obtained, 

C{xi,yj) = J J iWij)\t=Qf{x,y)dS + J ' j {CDijVWij - Wijg) • dLdl (1) 

where C is the impurity concentration, S is the spatial domain, T is the boundary of the spatial domain, f(x, y) 
is the initial profile, and g is the impurity flux across the boundary. On the left hand side of the equation is 
the impurity concentration to be calculated at a point (a;,-, yj), while on the right hand side is a spatial domain 
integral and a time domain integral of the impurity fluxes across the boundary. 

The local weighting function Wij is a solution of the adjoint diffusion equation with a local diffusivity Dij. 
For a nonlinear diffusion problem, this local weighting function is an approximate weighting function of the 
diffusion equation. For example, for a semi-infinite region, a local weighting function can be written as follows. 

The local diffusivity Dij is defined as the function of the impurity concentration at the point of interested 
(xi, yj). The calculation of the local diffusivities includes the vacancy and interstitial effects as well as the built-
in electrical field effect. An iterative scheme is proposed to calculate the impurity concentration based on the 
calculated local diffusivity. The local diffusivity is adjusted in terms of the calculated impurity concentration. 
The iteration stops when the difference between two consecutive values of the impurity concentration satisfies 
a given error tolerance. The error caused by the approximation of the weighting function is sufficiently small 
as long as the local diffusivities around any point do not change dramatically. This condition is valid in most 
practical cases in VLSI diffusion processes because the impurity profiles arc smooth curves and the changes of 
the diffusivities cannot be arbitrarily large. In the implementation, the error can be reduced by bounding the 
changes of the local diffusivities. 

There are several ways to compute the spatial domain integral numerically. To have an efficient integral 
calculation, the Gauss-Hermite formula is chosen with mirroring the initial profile properly on the negative 
half of the spatial region. For example, for a planar surface substrate, a spatial domain integral can be written 
as 
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with F(x,y) defined as / (x , —y) for y < 0, and f{x,y) for i/ > 0. Here Ak and Bi are weights, and Xk and yi 
are the positions variables. 

For the time domain integrals, the impurity concentration on the boundary is approximated by polynomials 
in the time domain, and then the numerical integration such as the Simpson's rule is used to evaluate the 
integrals. 

We have implemented the method for solving one- and two-dimoisional diffusion problems in a computer 
program and run the examples on a VAXstation GPX II. The models for calculating the local diffusivities 
and other parameters such as segregation coefficients used in the following examples arc the same as those in 
SUPREM III [2]. Examples 1 and 2 show the comparison of the one-dimensional simulation results between 
the proposed method and SUPREM III, and the execution times are shown in Table 1. The execution time for 
Example 3 is 52.47 seconds. Example 4 shows that the proposed method is able to handle a diffusion problem 
with a nonplanar surface structure. 
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T h e new method gives potential for achieving very efficient diffusion simulat ion. T h e implementat ion shows 
tha t very large t ime steps and coarse grids in numerical integration can be used to give sufficiently accurate 
results. T h e positions where the impuri ty concentrat ions are calculated can be selected for the use in the 
interpolation to give the initial profile for the next diffusion. Since the impuri ty concentrat ions a t grid points 
are calculated individually, the method is natural ly suited for parallel processing. 
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Exampio 4. Boron Redislr ibul ion 
wiih Nonplanar Surface Sirucluro 

by Numerical Integral Method 
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