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Finite difference or finite element methods are traditional numerical techniques for solving partial differ-
ential equations in VLSI process simulation. Both of these approaches consume large CPU times due to fine
spatial grids and small time steps required to achieve desired accuracy. In our opinion, the smooth impurity
profiles in VLSI processes allow us to explore more numerically stable integral approaches to diffusion sim-
ulation. In this paper we propose a numerically efficient yet physically accurate approach which we call the
numerical integral method. This method is an extension of the boundary integral methods{1] to solve linear and
nonlinear diffusion problems with physically-based diflusivity models to account for concentration-dependent
effects, oxidizing ambients eflect, co-diffusion, etc.

In this method, a partial diflerential diffusion equation is first transformed to an integral form by using the
weighted residual lechnigques with a local weighting function which is related to both time and spatial domains.
For a two-dimensional diffusion problem, the following integral form of the diffusion equation is obtained,
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where C is the impurity concentration, S is the spatial domain, I' is the boundary of the spatial domain, f(z,y)
is the initial profile, and g is the impurity flux across the boundary. On the left hand side of the equation is
the impurity concentration to be calculated at a point (z;, y;), while on the right hand side is a spatial domain
integral and a time domain integral of the impurity fluxes across the boundary.

The local weighting function Wj; is a solution of the adjoint diffusion equation with a local diffusivity D;;.
Tor a nonlinear diffusion problem, this local weighting function is an approximate weighting function of the
diffusion equation. For example, for a semi-infinite region, a local weighting function can be written as follows,
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The local diflusivity D;; is defined as the function of the impurity concentration at the point of interested
(xi,y;). The calculation of the local diffusivities includes the vacancy and interstitial effects as well as the built-
in electrical field effect. An iterative scheme is proposed to calculate the impurity concentration based on the
calculated local diffusivity. The local diffusivity is adjusted in terms of the calculated impurity concentration.
The iteration stops when the difference between two consecutive values of the impurity concentration satisfies
a given crror tolerance. The error caused by the approximation of the weighting function is sufficiently small
as long as the local diffusivities around any point do not change dramatically. This condition is valid in most
practical cases in VLSI diffusion processes because the impurity profiles arec smooth curves and the changes of
the diffusivities cannot be arbitrarily large. In the implementation, the error can be reduced by bounding the
changes of the local diffusivities.

There are several ways to compute the spatial domain integral numerically. To have an efficient integral
calculation, the Gauss-Hermite formula is chosen with mirroring the initial profile properly on the negative
half of the spatial region. For example, for a planar surface substrate, a spatial domain integral can be written
as
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with F(x,y) defined as f(z, —y) for y < 0, and f(z,y) for y > 0. Here Ay and B; are weights, and z; and y
are Lhe positions variables.

For the time domain integrals, the impurity concentration on the boundary is approximated by polynomials
in the time domain, and then the numerical integration such as the Simpson’s rule is used to evaluale the
integrals.

We have implemented the method for solving one- and two-dimensional diffusion problems in a computer
program and run the examples on a VAXstation GPX II. The models for calculating the local diffusivities
and other parameters such as segregation coeflicients used in the following examples are the same as those in
SUPREM I [2]. Examples 1 and 2 show the comparison of the one-dimensional simulation results hbetween
the proposed method and SUPREM III, and the execution times are shown in Table 1. The execution time for
Example 3 is 52.47 seconds. Example 4 shows that the proposed method is able to handle a diffusion problem
with a nonplanar surface structure.



The new method gives potential for achieving very efficient diffusion simulation. The implementation shows
that very large time steps and coarse grids in numerical integration can be used to give sufliciently accurate
results. The positions where the impurity concentrations are calculated can be selected for the use in the
interpolation to give the initial profile for the next diffusion. Since the impurity concentrations at grid points
are calculated individually, the method is naturally suited for parallel processing.
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