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Abstract—We propose a novel statistical device modeling
methodology that can represent model-parameters of arbitrary
distribution and correlation. The proposed modeling is based on
Markov chain Monte Carlo method in which random samples
are drawn from the target probability distribution. The proposed
method is also independent of the device models, allowing
us to apply the method for any device models. Through the
validation, the proposed method successfully reproduced the two
peaks of the model parameter distribution that generated the
current distribution. In addition, the experiments on the mea-
sured current variations following a non-Gaussian distribution
demonstrate that the proposed method reduced the modeling
error significantly as compared to the conventional method that
can only use normal distribution.

Index Terms—statistical device modeling, device process vari-
ation, power MOSFET

I. INTRODUCTION

Statistical circuit simulation, which considers the variation
of device characteristics, is critically important for robust
circuit design. Various statistical device modeling methods
have been proposed thus far. Most of them assume that the
model parameters as well as the device characteristics follow
a normal distribution [1]. However, in reality, it is frequently
reported that the model parameters and device characteristics
follow a non-Gaussian distribution [2]–[5]. Moreover, the
devices that are fabricated in multiple fabs can collectively
exhibit a multimodal parameter distribution. Nevertheless,
existing modeling methods can only approximate them using
Gaussian distributions.

In this paper, we propose a new statistical device modeling
technique that assumes no distributions and correlations. The
contributions of this work are summarized as follows:

• Statistical parameter modeling for arbitrary distri-
butions with no underlying assumption: We redefine
statistical circuit simulations by introducing the concept
of Markov chain Monte Carlo method for generating
statistical model parameters. The proposed method is
defined as a general procedure so that the model pa-
rameters represent arbitrary distributions including their
correlations.

• Model independence: The proposed method uses the
device models as a translator of the variation of model

Algorithm 1 Metropolis sampling
1: Set the initial value x(1)

2: for i = 1 to N − 1 do
3: x′ is generated from a proposal distribution q(x′|x(i))
4: r ← P (x′)/P (x(i))
5: Draw R from uniform distribution with range 0 ≤ R < 1
6: if r > R then
7: x(i+1) ← x′ (accept)
8: else
9: x(i+1) ← x(i) (reject)

10: end if
11: end for

parameters to the target performance variation, such as
measured drain currents. Hence, the proposed method is
applicable for any device models with no change.

• Solid use model: We present a concrete use model of
the proposed statistical modeling. Users generate ran-
dom model parameters based on the probability density
function (PDF) of measurement data provided by a
manufacturer.

While we focus on the modeling of power MOSFETs as an
example in this work, our modeling framework is general and
applicable for any device models.

II. STATISTICAL DEVICE MODELING FOR ARBITRARY
DISTRIBUTION

A. Markov chain Monte Carlo

We first review the Markov chain Monte Carlo (MCMC)
method applied to the proposed modeling. MCMC is a method
for generating random samples that follow a given multivari-
ate probability distribution [6]. As a representative example,
we explain the Metropolis method [7] which is sketched in
Algorithm 1. Here, x is the random sample and P (x) is the
PDF that x should follow. Through Algorithm 1, we obtain N
random samples {x(1), x(2), . . . ,x(N)} that follow the PDF
P (x).

Though Algorithm 1 outlines the key idea of generating
samples using MCMC, various modifications are proposed for
improving the quality of the generated samples. In practice,
between any two consecutive samples obtained according
to Algorithm 1 suffers from correlation [6]. This correla-
tion depends on the choice of the proposal distribution q.
Choosing q that yields smaller distances between sample978-1-6654-0685-7/21/$31.00 ©2021 IEEE
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Fig. 1. Approximation of the probability density ratio.

candidates obviously leads to larger correlation. The samples
hence should be subsampled to remove such correlations. For
example, every one out of ns samples can be used to improve
independence. In addition, when the initial sample x(1) is
located away from a high probability region, which is usually
the case when the PDF is unknown, the samples obtained at
the beginning of this process may not correctly reflect the
probability density of P (x) [6]. Hence, the samples obtained
until the process reaches the steady state are discarded as
burn-in.

B. Key idea

In the proposed statistical device modeling, random model
parameter sets {p(1),p(2), . . . ,p(N)} that follow P (p) are
generated via MCMC to reproduce the distribution of mea-
sured device characteristics. Here, a model parameter set p
consists of m model parameters, p = (p1, p2, . . . , pm)T ,
where pj represents the j-th model parameter, such as thresh-
old voltage VTH. In general, we do not know the PDF P (p)
that the model parameter sets follow. Instead, through mea-
surements, we know the drain current distribution Q(I). The
essential idea of the proposed method is to indirectly approxi-
mate the model parameter distribution by randomly generating
parameter sets through the process similar to MCMC so that
simulated drain currents using the approximated device model
parameters reproduce the measured current distribution.

Fig. 1 illustrates a key component of this idea in a two
dimensional example. As we vary the model parameter set
p in the parameter space p1–p2, the drain current I varies
correspondingly in the current space Id1–Id2 through the
transformation of the current model equation f . Here, Id1
and Id2 represent the drain currents at different bias points. If
the current density ratio Q(I ′)/Q(I(i)) can be approximated
by the ratio of the model parameters P (p′)/P (p(i)), we can
sample model parameter sets that reproduce the measured
current distribution via the process similar to MCMC.

C. The Proposed Statistical Modeling

The proposed statistical device modeling is shown in Al-
gorithm 2. We first apply kernel density estimation (KDE)
for the measured drain currents in an m-dimensional space to
obtain PDF Q(I). Starting from the initial model parameter
set p(1), lines 4 to 12 are repeated for N − 1 times to
generate a parameter set for each iteration. The next sample
candidate p′ is obtained by moving the current sample p(i)

in the model parameter space using a proposal distribution
q(p′|p(i)) in line 4. In line 5, p(i) and p′ are respectively
converted to the drain currents I(i) and I′ for m bias points

Algorithm 2 Statistical Device Modeling via MCMC
Require: Measured current variation data of m bias points, I
Ensure: N instances of model parameters p sampled from the

unknown model parameters’ PDF P (p).
1: Estimate the PDF Q(I) from the current variance data
2: Set p(1) as an initial instance of model parameter set
3: for i = 1 to N − 1 do
4: p′ is generated from a proposal distribution q(p′|p(i))
5: I′ ← f(p′), I(i) ← f(p(i))
6: r ← Q(I′)/Q(I(i))
7: Draw R from uniform distribution with range 0 ≤ R < 1
8: if r > R then
9: p(i+1) ← p′ (accept)

10: else
11: p(i+1) ← p(i) (reject)
12: end if
13: end for
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Fig. 2. Use case of the proposed statistical device modeling.

via a current model equation f . This conversion through
the current model equation does not appear in the original
MCMC. Through this conversion, current PDF Q of the cor-
responding model parameter set is evaluated, and compared
with the previous one, i.e., the ratio r = Q(I′)/Q(I(i))
is calculated. Here, Q(I′)/Q(I(i)) ≈ P (p′)/P (p(i)) holds
as shown in Fig. 1. Then, we generate a uniform random
number R, where 0 ≤ R < 1. If r is greater than R, we
accept the candidate p′ as the next sample p(i+1) (lines
8 and 9), otherwise p′ is rejected and the current sample
p(i) becomes the next sample p(i+1) (lines 10 and 11).
The proposed algorithm yields random model parameter sets
{p(1),p(2), . . . ,p(N)} which reproduce the measured current
distribution. In practice, the burn-in and the decorrelation by
subsampling may be necessary but omitted in the algorithm
description for the purpose of clarity. As we see in the above
procedure, the proposed statistical device modeling method
does not assume any underlying distributions for the model
parameters nor correlations between them. This is a general
method that is applicable not only for current variations but
also for any other electrical characteristic variations, such as
capacitance.

Fig. 2 shows an example use of the proposed method. A
device manufacturer measures characteristic variation data,
e.g., drain current, on a large number of devices. The
manufacturer then calculates its PDF, Q(I), through kernel
density estimation (KDE). The manufacturer distributes Q(I)
to users. Using Q(I), the users can generate model parameter
sets by using their own models via the proposed method.
Each generated model parameter set serves as a random model
instance for Monte Carlo simulation.



TABLE I
MODEL PARAMETERS

Parameter Description [Unit]
K Current gain factor [A/V2]
VTH Threshold voltage [V]
CLM Channel Length Modulation coefficient [V−1]
MD Mobility degradation coefficient [V−1]
MDV Channel voltage [V]
DELTA Smoothing parameter [-]

III. EXPERIMENTS

A. Drain current model for power MOSFETs

On the basis of the simple threshold-voltage model, a drain
current model for power MOSFETs is defined for use in
the following experiments. This model equation serves as the
function f in Fig. 1 and Algorithm 2. The model parameters
of the model equation are summarized in Table I and are
indicated in bold face. The drain current is expressed as:

I ′d =

{
K(Vgs −VTH− Vds,mod

2 ) · Vds,mod (Vgs ≥ VTH)
0 (Vgs < VTH).

(1)
Here, the parameters such as channel length L, channel
width W , carrier mobility µ, and oxide capacitance Cox are
collectively represented as K because each component in
K = Cox · µ · W

L is inseparable in the parameter fitting. In
order to represent gradual transition between the linear and
saturation regions of SiC power MOSFETs [8], Vds,mod is
introduced as in:

Vds,mod =
Vds[

1 +
(

Vds

Vgs−VTH

)DELTA
]1/DELTA

. (2)

By considering the channel length modulation and mobility
degradation, Id becomes as follows:

Id =

{ 1+CLM·Vds
1+MD(Vgs−MDV) · I

′
d (Vgs ≥ MDV)

(1 +CLM · Vds) · I ′d (Vgs < MDV).
(3)

B. Analysis on Simulation Data

In order to validate the proposed method, we first apply the
proposed method to a problem where the underlying ground-
truth is known.

1) Simulation Setup: We generate correlated model param-
eters following a multi-modal distribution shown in Fig. 3.
Here, the variation of two model parameters, K (current gain
factor) and VTH (threshold voltage), are considered for ease
of illustration. In total, 5000 parameter sets are generated
using two mean values, variances, and correlation coefficients
for K and VTH. These values are derived by the measured
current distributions of the SiC MOSFETs [9] manufactured in
two different fabrication lines. Within the 5000 devices, 3500
and 1500 devices use different mean values, variances and
correlation coefficients. Then, we generate current samples
using the model parameter sets through the current model

Fig. 3. Synthesized model parameter distribution based on the measured
current distributions of the SiC MOSFETs manufactured in two different
fabrication lines.

equations in Eqs. (1)-(3). The obtained current variation and
the estimated PDF are shown in Fig. 4.

On the current distribution, we perform the proposed
method to generate 5000 random model parameter sets of K
and VTH. The initial parameter set p(1) = (K(1),VTH(1))T

for MCMC is randomly chosen from the intervals [0.1, 0.4)
and [4, 8). The proposal distribution q during MCMC is an
uncorrelated bivariate normal distribution with mean p(i) and
the variances, i.e., (K′,VTH′)T = (K(i) +∆K,VTH(i) +
∆VTH)T , where ∆K ∼ N(0, 0.12), ∆VTH ∼ N(0, 0.22).
The total number of samples N is 101,000, in which the
first 1,000 samples are discarded as burn-in. Then, every 20
samples of the remaining 100,000 samples are used as the
generated sample, giving us a total number of 5,000 parameter
sets.

In comparison, we perform the conventional statistical
device modeling [10]. Mean, variance, and correlation of the
model parameters are derived, and 5,000 model parameter sets
following the derived normal distribution are generated.

2) Results: The parameters generated by the proposed and
the conventional methods are shown in Fig. 5. The solid black
dots and histograms in (a) and (b) are identical and are the
ground truth shown in Fig. 3. The diamonds in Fig. 5(a) are
the generated model parameters using the existing method,
while triangles in Fig. 5(b) are those using the proposed
method. The corresponding histograms projected along K
and VTH axes are also presented. The model parameters
generated by the proposed method successfully reproduced the
two clusters. There exist two high density locations, and the
density is lower at about the center of this graph. On the other
hand, in Fig. 5(a), those generated through the conventional
method approximates the sample density with one peak. This
difference is expected because the existing method assumes
each model parameter to follow a normal distribution. Without
assuming any distributions, the proposed method reproduced
the distribution of model parameters more accurately than the
existing method.

The accuracy of the proposed and the conventional methods
is quantitatively evaluated based on KL divergence [11]. We
calculate probability densities of the model parameter samples
generated using both methods by KDE. We calculate KL
divergence between ground truth’s PDF P (p) and generated
samples’ PDF P ∗(p) by the following equation:

DKL(P ||P ∗) =

∫
P (p) log

P (p)

P ∗(p)
dp. (4)

The KL divergence of the proposed method is 0.065 and that



(a) Simulated current variation. (b) Estimated probability density.

Fig. 4. Generated current variation and its probability density. The bias
conditions, Id1 and Id2 are chosen at (Vgs, Vds) =(8 V, 20 V), (18 V, 1 V). A
normal distribution is used as the kernel function for the KDE. The bandwidth
in KDE is obtained by using the Scott’s method [12].

(a) Conventional method (Gaussian). (b) Proposed method (MCMC).

Fig. 5. Comparison of the original and generated (extracted) model parameter
variation.

of the existing method is 0.46. The proposed method reduced
the error by 87% compared to the existing method, which
may lead to critical yield estimation error.

C. Analysis on Measured Data

We now apply the proposed method for modeling the
measured current characteristic variations of 1020 SiC power
MOSFETs [9].

We again demonstrate our method by using two parameters,
K and VTH because of the simpplicity. The other parameters
are treated as constant in this analysis. The bias conditions to
define current distribution are (Vgs, Vds)=(20 V, 8 V) and (9 V,
9 V) for Id1 and Id2, respectively, which is shown in Fig. 6(a).
Then, we estimate the PDF of the current variation via KDE,
using normal distribution as the kernel function. The estimated
PDF of the measured current data is shown in Fig. 6(b).

Then, we perform the proposed method to obtain random
parameter sets. Here, the proposal distribution q and how to
choose the initial parameter set p(1) are the same as those
in the previous simulation. The total number of samples N
is 205,000, in which the first 1,000 samples are discarded as
burn-in. Then, every 200 samples in the remaining 204,000
samples are used as the generated sample, giving us a total
number of 1,020 sets of model parameters. In comparison,
we perform the conventional statistical device modeling [10].
Mean, variance, and correlation of the model parameters are
obtained, and then 1,020 model parameter sets following the
normal distribution are generated.

In this experiment, since the true distribution of the model
parameters is unknown, the accuracy is evaluated by com-
paring the current distributions reproduced by the generated
model parameters. The obtained current distributions are
shown in Fig. 7. The current characteristic variation generated
by the proposed method overlaps closely to the measurement.

(a) Measured current variation. (b) Estimated probability density.

Fig. 6. Measured current variation and its probability density.

(a) Conventional method (Gaussian). (b) Proposed method (MCMC).

Fig. 7. Comparison of the measured and generated current variations.

In particular, the skew and the low probability region (outline)
that determines circuit yield are very well represented. Mean-
while, the currents generated by the existing method lacks
the skewness of the current distribution due to its normal
assumption. The proposed method can simulate the statistical
current variation more accurately as it does not assume any
statistical distribution of the parameters.

The accuracy of the proposed and the conventional methods
is quantitatively evaluated based on KL divergence. We cal-
culate probability densities of the current variation generated
using both methods by KDE. We calculate KL divergence be-
tween measured current’s PDF Q(I) and generated current’s
PDF Q∗(I) by the following equation:

DKL(Q||Q∗) =

∫
Q(I) log

Q(I)

Q∗(I)
dI. (5)

The KL distance of the proposed method is 0.036 and that of
the existing method is 0.21. The proposed method reduced the
error by 82% compared to the existing method, which may
lead to critical yield estimation error.

IV. CONCLUSION

We proposed a novel and general statistical device modeling
method in which no assumptions about the model parameter
distribution are placed, and thus arbitrary distribution and
correlations between the model parameters can be represented.
In addition, the proposed modeling method is independent of
a model equation. Through simulated and measured data, the
accuracy of the proposed method is validated. The proposed
method better approximated the distributions of model pa-
rameters and current variations than the existing method that
relies on Gaussian assumption.
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