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Abstract—This paper presents a TCAD-based analysis of 

DRAM retention time variability. Both statistical and process-

induced variability are considered. We highlight that discrete 

dopant fluctuations play a fundamental role in determining the 

leakage trends across the space of process variations and, 

therefore, they should be taken into account for an accurate and 

physics-based evaluation of yield and reliability of ultra-scaled 

DRAMs.  
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I. INTRODUCTION 

Design Technology Co-Optimization (DTCO) 
methodologies continue to gain momentum, as the challenges 
of physical scaling increasingly limit the continued 
performance improvement of logic and memory technologies 
[1-3]. We previously presented a DTCO methodology for 
DRAM optimization [4-5], using the DRAM refresh time 
(tREF) as a figure of merit to be optimized. Trap-assisted 
tunnelling (TAT) leakage in the DRAM access transistor 
drain junction is the dominant factor, not only limiting the 
average tREF performance, but also determining refresh 
failures [5]. Our previous work, and other recent 
experimental and modelling efforts [6-7], have stressed the 
importance of the electric field fluctuations induced by 
random discrete dopants (RDD) in the transistor junction as a 
major source of variability for tREF. 

However, it is still common practice to adopt modelling 
approaches based solely on variations in trap properties [8-
10] to tackle the tREF variability, as this approach requires 
less computational effort and is simpler to implement than a 
3D statistical simulation approach featuring random discrete 
dopants. Indeed, trap-property parameters (such as capture 
cross-section and trap energy level) may give the impression 
of offering enough flexibility to fit the results of more 
complex simulation methodologies (featuring random 
discrete dopants) or experimental data, but this fitting 
exercise may lead to erroneous predictions as soon as process 
variations are introduced.  

In this paper, we show that a statistical simulation approach 
based solely on trap characteristic variation is not robust 
enough to reproduce RDD-induced effects when process 
changes are introduced to explore design/technology 
improvements. Therefore, the accurate modelling of RDD-
induced fluctuations becomes a fundamental enabler for a 
reliable DTCO approach to DRAM technologies. 

II. SIMULATION METHODOLOGY 

The aim of the DTCO flow is to allow accurate and extensive 
exploration of the design space by studying both average and 
statistical performance metrics. Our implementation starts 
with the accurate process structure generation by means of 
Process Explorer [11] (layout to 3D structure) and Sentaurus 
Process [12] (doping profiles) to capture process and doping 
profiles. The accurate device simulation of the nominal 
transistors is achieved by means of Sentaurus Device [13], 
whereas Garand VE [14] is employed for the physics-based 
variability simulation of TAT leakage current in the presence 
of RDD. 

The trap-assisted tunnelling leakage contribution is modelled 
through an enhancement of the trap capture cross-section in 
the conventional Shockley-Read-Hall (SRH) generation 
term, with Garand VE simulating hundreds of statistical RDD 
instances for each process condition under consideration. For 
each RDD configuration, thousands of single-trap positions 
are evaluated to gather the TAT leakage statistics [4]. The 
RDD induces fluctuations in the carrier densities and electric 
field, therefore directly affecting the base SRH 
recombination rate and the capture cross-section 
enhancement factor. Silicon traps located near to a discrete 
dopant are, therefore, expected to be mostly affected. In 
particular, traps located at the drain junction may experience 
additional RDD-induced boost to their leakage if dopants of 
different species happen to be aligned on either side of the 
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Figure 1: 2D cut-plane of the 3D TCAD structure representing 

the DRAM pass transistor for three variation of the gate height: 

nominal process and +/-40% height variation 



traps so to intensify the local electric field or band-bending 
for the trap-assisted tunnelling. 

To show the importance of RDD in enabling a reliable DTCO 
methodology for DRAM, we have also implemented a 
simplified approach, where the doping is assumed to be 
continuous and the leakage variability is achieved solely by 
varying the trap properties. 

III. DRAM LEAKAGE VARIABILITY 

The test structure used for this study is representative of a 
generic 6F2 DRAM technology cell [4]. We have chosen the 
gate height as a process parameter to be optimized (Figure 1), 
as the cell leakage is most responsive to the gate-edge 
location relative to the drain pillar junction doping profile. To 
evaluate the statistical leakage trends at low probability, for 
each process scenario, 200 3D TCAD simulations featuring 
different random discrete dopant configurations are carried 
out. For each random dopant configuration, the leakage due 
to a single discrete trap is evaluated, as detailed in [4], for a 
large number of single trap positions (~9,000) across the 
silicon region under investigation. This allows the efficient 
collection of large ensembles (~1.8 million) of leakage 
values, therefore enabling the study of the complementary 

cumulative distribution function (CCDF) down to 10-6 
probability. This low probability level is, in fact, required 
because it represents the leakage of 1 cell in a roughly 1Mbit 
DRAM array. In practice, lower probability portions of the 
leakage distributions can be explored by increasing the 
number of statistical simulations: this can either be achieved 
by adopting larger ensembles of RDD configurations or by 
increasing the number of locations probed by a single trap. It 
is worth noting that adding RDD simulations will increase the 
computational effort, as a new 3D TCAD simulation is 
required for each new RDD configuration, whilst the trap 
position sampling will introduce only a fraction of the effort, 
as the trap-induced leakage is performed as a post-process 
calculation [4]. A balance between RDD configurations 
(explored by TCAD) and trap configurations (explored by 
post-process computations) has to be maintained to achieve 
an accurate description of the leakage distribution low 
probability tails without distortions introduced by over-
sampling of the trap configurations. 

Figure 2 shows the leakage simulation results obtained when 
considering or neglecting RDD. These results highlight that 
the interaction between traps and RDD can lead to 
significantly larger leakage tails than can be predicted by an 

 

Figure 3: Fitting obtained with three sets of parameters, as 

specified in Table I. 

 

Figure 4: RDD-induced leakage enhancement factor as a 

function of the relative gate height. 

 

Sim Type ET [eV] ET std dev [eV] σT [cm2] 

RDD -0.20 0.05 10-15 

No RDD 1 -0.24 0.05 10-14 

No RDD 2 -0.29 0.05 5 × 10-14 

No RDD 3 -0.31 0.05 10-13 

 

Table 1: Simulation parameters for the case with RDD and for 

three cases without RDD: parameters for the cases without 

RDD are chosen to fit the RDD simulation results for the 

nominal process split (i.e. relative gate height =1.0). 

 

Figure 2: Trap-induced leakage simulation comparison when 

including or neglecting RDD. In this case the “enhancement” 

factor of the inclusion of RDD in the analysis at a probability of 

1e-6 is approximately 9x. 



approach based on continuous doping. Large leakage tails 
will, in turn, degrade bitcell yield (in terms of retention time). 
The simulation results for the case without RDD highlight 
that the tail is bounded with a factor-of-10 lower leakage than 
the RDD case.  

Our results show, therefore, that RDD has a non-negligible 
impact on the leakage distribution tails. Nevertheless, the 
reader may wonder if one could just use a simplified approach 
relying solely on the trap energy level and trap capture cross-
section as variability parameters, neglecting the random 
discrete dopants, yet achieving the same leakage distribution 
obtained by RDD-inclusive simulation. Such an approach can 
be, indeed, motivated by the reduced computational effort 
required to explore solely trap properties variations.  

In Figure 3 we show that one could reproduce (in the explored 
range of probabilities and for the specific process split) the 

RDD+trap-induced leakage variations without the need of 
including RDD into the TCAD simulation. In this case, there 
are virtually infinite possible combinations of trap energy and 
cross-section that are able to fit the RDD+trap-induced 
leakage data. In Table 1 we are arbitrarily choosing 3 possible 
combinations of cross-section and energy variations that are 
within the reasonably physics-based range expected for 
Silicon traps. This arbitrary choice already highlights a first 
issue affecting a simplified (RDD-free) approach, as 
connection with the underlying trap physics is, inevitably lost 
and trap properties become merely fitting parameters, which 
lowers the simulation prediction quality. This, nonetheless, is 
a minor issue when compared to the second predictability 
issue related to process variation exploration. To highlight 
this, we have performed statistical simulations with and 
without RDD across the space of gate height process splits 
and measured how the leakage enhancement due to RDD 
responds to these process variations. Figure 4 shows the 
leakage enhancement factor (LEF), calculated as the ratio 
between the leakage with and without RDD at a probability 
of 10-6, as a function of the gate height process variation: 
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The trend is clearly non-linear, and this behaviour can be 
understood by considering the gate edge position with respect 
to the drain pillar doping. In fact, the closer the gate edge is 
to the high doping regions, the higher the impact of random 
dopants on enhancing the leakage current (see Figure 5). 
However, as the doping increases, the screening length 
decreases and, therefore, the RDD-induced electric field 
peaks are reduced, thus diminishing the RDD-induced 
electric field impact. Based on these results, we can expect 
that the arbitrary fitting obtained in Figure 3, cannot 
adequately hold true across multiple process splits.  

To further confirm this, we have performed statistical 
simulations for the three fitting scenarios reported in Table 1 
for all process points. Figure 6 shows the leakage current 
value at a probability of 10-6, comparing the results with and 

 

 

 

 

Figure 5: 3D TCAD simulation without (top) and with (bottom) 

random discrete dopants, highlighting one of the extreme 

devices with highest leakage. In this case the RDD 

configuration brings the effective p-n junction down towards 

the bottom of the pillar, with maximum electric field in 

proximity to the discrete trap. 

 

Figure 6: Leakage current extracted at 10-6 CCDF probability 

for the simulation scenarios reported in Table I across the 

space of process variations. The probability level 10-6 is chosen 

because it represents the leakage of 1 cell in a roughly 1Mbit 

DRAM array. 



without RDD. All cases follow similar trends, with a peak 
occurring when the maximum electric field (determined by 
the gate edge position with respect to the drain contact) meets 
the region of maximum net generation (determined by the 
doping profile). However, the range of leakage variations 
predicted by RDD-inclusive simulations is significantly 
larger than the one obtained by means of only varying the trap 
properties. The departure between RDD and non-RDD 
results is significant as soon as we move from the calibrated 
process point. As the non-RDD cases rely solely on the trap 
energy level variation, their sensitivity to process variations 
is weaker than the RDD-inclusive case.  

To complete our analysis and offer a more 
realistic/comprehensive DTCO overview for DRAM, the 
trends in ON-current and gate capacitance with respect to 
gate height variations are reported in Figure 7 and Figure 8, 
respectively. This is done to emphasize the trade-off between 
leakage and ON-current/capacitance performance and to 
stress that a complete cell optimization will have to satisfy 
both retention and writability/drivability performance. For 
example, when analysing tREF alone it would be tempting to 
select the shortest gate height available (0.6) as this provides 
~10x improvement in leakage/tREF, however this results in a 
40% degradation in worst-case Ion current, which would 
significantly impact performance. 

IV. CONCLUSIONS 

In this work we have carried out statistical 3D simulations to 
emphasize the importance of random discrete dopants in 
properly predicting the leakage variability trends of advanced 
DRAM cells. By preserving the connection with the 
underlying physics, the predictive power of a statistical 
simulation featuring random discrete dopants can be robust 
to process variations and provide a valuable tool to aid the 
understanding of the correct design margins and to enable a 
reliable TCAD-based DTCO methodology to evaluate and 
optimize advanced DRAM tREF in the presence of process 
and statistical variability. 
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Figure 7: ON current trend as a function of the relative gate 

height. Red dashed lines represent the +/-3σ variability due to 

RDD. Note that the process variation influences not only the 

average value but also the variability amplitude. 

 

Figure 8: Gate capacitance for OFF and ON state as a function 

of the relative gate height. The capacitance increases as 

expected as the gate meta surface increases. 


