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Abstract—We use a plane-wave based quantum transport
approach to model the properties of metal contacts to two-
dimensional (2D) semiconductors. Using the example of Al
contacted to silicane, we show that our model is capable of
obtaining the carrier density, potential distribution and current
flow at the atomistic level. We self-consistently calculate the
current density in an Al-silicane contact and show that the
current mainly flows through the edge of the contact as opposed
to being distributed along the entire length of the contact region.
We find a contact resistance of 3.8 ·104Ωµm; a high value which
we attribute to the large difference between the Al work function
and the silicane electron affinity.

Index Terms—Quantum transport, empirical pseudopotentials,
contact resistance, two-dimensional materials

I. INTRODUCTION

In the search for optimal gate control over the channel of
field-effect transistors, the body thickness of the semiconduc-
tor has been reduced to the atomic scale. Two-dimensional
(2D) materials, such as MoS2, are strong candidates for future
technology nodes. However, when contacting 2D semiconduc-
tors with a metal, large contact resistances are observed [1].
To better understand the factors at the atomistic scale, we per-
form self-consistent quantum mechanical transport simulations
using empirical pseudopotentials.

There exists a wide range of simulation methods that
provide insight into the properties of metal-2D semiconductor
contacts. A semi-classical Schottky barrier model [2], [3]
based on Landauer’s formalism provides insight at the device
level. Banerjee et al. [4] investigated the effect of surface
roughness on the quality of metal/MoS2 contacts using a self-
consistent transmission line model. Ab-initio methods provide
a deeper insight into the nature of the contact interface [5].
Pan et al. investigated the interfaces between various metals
and monolayer MoS2 using Density Functional Theory (DFT)
and the non-equilibrium Green’s function (NEGF) method.
Luisier et al. [6] employed a combination of DFT, Maximally
Localized Wannier Functions (MLWF) and the NEGF formal-
ism to investigate the electronic transport through metal/MoS2
interfaces.

Here we present Al on silicane as an example heterostruc-
ture to investigate the transport characteristics of metal-2D
semiconductor contacts using an in-house plane-wave based
method [7]. Using our model, we have access to the real-
space carrier density and are able to model current flow at an
atomistic level.
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II. METHOD

A. DFT: Interlayer distance

Figure 1 shows the unit cell used in the simulation of
our Al-silicane contact heterostructure. Because of the lattice
mismatch, the commensurate unit cell is quite large when we
leave both materials unstrained. We apply a strain of 21% to
the silicane layer, while leaving the Al unstrained, in order to
obtain a unit cell which allows for computationally feasible
calculations.

To obtain the correct distance between the Al and the sili-
cane, we perform a relaxation of the structure, while keeping
the lattice constant the same. For the structural relaxation, we
use Density Functional Theory as implemented in the Vienna
Ab-initio Simulation Package (VASP). The resulting distance
between Al and silicane is 2.44Å. We use the DFT calculated
interlayer distance in all subsequent calculations.

Fig. 1: The commensurate unit cell used for the Al-silicane
contact calculations. The Al (top) has an FCC (111) surface
facing the silicane (bottom).

B. Contact heterostructure

Figure 2 shows the structure of our Al-silicane contact. We
take three separate regions into account: Region I, where there
is only Al, Region II, where the Al is on top of a silicane layer,
and Region III, where only the silicane is present. Following
the preparation of the structure, we take care to properly
calculate the properties of the two materials.

We use the Empirical Pseudopotential Method (EPM) [8]
to calculate the band structures of silicane and Al. The EPM
parameters have been optimized by Laturia et al. to accurately



Fig. 2: The structure of our Al-silicane contact. The simulation is comprised of three different regions: Region I, where only
the Al is present, Region II, where the Al and silicane are present, and Region III, where only the silicane is present.

produce band structures obtained using DFT [9]. In the case
of Al, the parameters were optimized using the gerneralized
gradient approximation as proposed by Perdew, Burke and
Ernzerhof (PBE) [10]. The silicon EPM parameters were
obtained the silicon DFT band structure, calculated using
Hybrid Functionals to account for the well-known band gap
underestimation for semiconductors by standard DFT meth-
ods [11].

The EPM parameters for both materials are then used by our
in-house Plane-wave Electron TRAnsport (PETRA) solver [7]
to calculate the eigenstates of the commensurate unit cell of
Fig. 1. For computational efficiency, the PETRA code uses a
Bloch wave basis set, which is the same across the entire
simulation domain. Specifically, the Bloch wave basis set
associated with the Al + silicane heterostructure of Fig. 1 is
used throughout the entire structure. The difference between
the different regions of the structure, Fig. 2, is made by
obtaining the difference between the original potential of the
supercell of Fig. 1 and a local atomic potential. To make
sure that the materials are correctly simulated across the three
regions of the simulation domain (see Fig. 2), we reconstruct
the band structures of the Al and the silicane at the left and
right edges of the simulation domain, respectively. We find that
the Bloch wave basis, in combination with the local atomic
potentials, accurately reconstructs the band structures across
the different regions of the simulation domain.

C. Self-consistent calculations

Once the structure is ready, we use the PETRA solver to
self-consistently calculate the properties of the contact. We
apply an n-type doping of 2 · 1013 cm−2 to the silicane
layer. We first self-consistently calculate the potential and
charge distribution in the unbiased (equilibrium) case, and
subsequently apply a bias of −0.1 eV over the structure
and again perform a self-consistent calculation. From the
current through the contact at −0.1 eV, we extract the contact
resistance.

III. RESULTS AND DISCUSSION

Figure 3 (right) shows the transmission through the struc-
ture, in the biased case. Figure 3 (left) shows the self-
consistently calculated potential φAl in the Al, taken along
a cutline at z = 0.73Å, and shifted by the Al workfunction,
and the conduction and valence bands of silicane, taken along

Fig. 3: (Left) Band diagram showing the silicane conduction
and valence bands, and the potential in the metal, φAl is shifted
by the work function (V - WF). We have applied a 0.1 eV
bias over the structure. The red arrow indicates the tunneling
path taken by the charge carriers in the biased contact. (Right)
Semilog plot of the transmission through the device, adjusted
to place the conduction band of silicane at the bias level.

a cutline at z = 0.39Å and shifted by the silicane electron
affinity, when the bias is applied. The arrow indicates that the
current is most likely to flow close to the edge of the contact,
where the Al potential and silicane conduction band are closest
to each other.

Figure 4 shows the self-consistently calculated free charge
density in the structure. The free charge density in the Al
forms a standing wave pattern with a free charge density
that oscillates above (red) and below (blue) the Fermi level.
We attribute the standing wave pattern to a high degree of
reflection at the edge of the Al slab in combination with
external scattering processes. We observe that the originally
n-type doped silicane is completely inverted below the Al.

Figure 5 uses a log plot to show the current density in our
structure, when the bias of −0.1 eV is applied. The current
increases exponentially from the left side of the contact region
(Region II) to the edge of the contact region, at the edge of the
Al. We attribute the edge-concentrated current flow to the large
contact resistance of 3.8 ·104 Ωµm that is formed when the Al



Fig. 4: The self-consistently calculated free charge density in the structure. Holes (positive charge) are shown in red, while
electrons (negative charge) are shown in blue.

Fig. 5: The current density through the structure. The current density is represented using a vector plot, with arrows indicating
the value and direction of the current density. The colormap shows the absolute value of the current density at each point on
a logartihmic scale.

inverts the originally n-type silicane upon contact formation.
Silicane has a very low electron affinity (2.19 eV), which,
in combination with the Al workfunction of 4.2 eV forms a
large Schottky barrier at contact and inverts the silicane below
the Al. Due to the Schottky barrier, a large contact resistance
forms and injection at the edge of the Al is promoted over
area-dependent injection.

Using systems with a smaller difference between the metal
work function and the semiconductor electron affinity, such
as Al and MoS2 (χ = 4.2 eV), would reduce the Schottky
barrier and reduce the edge-dependence of the current flow.
However, other factors are important as well. As Szabó et
al. [6] point out, the penetration of the metal wavefunction
into the semiconductor bandgap has a significant impact on
the current flow between the two materials.

IV. CONCLUSIONS

We have applied the PETRA solver to metal-semiconductor
contacts and studied the properties of Al on silicane as an
example system. We performed self-consistent calculations to
obtain the potential, charge distribution and current density
through the contact. The contact resistance of 3.8 · 104Ωµm
was found to be due to the large difference between the Al
work function and the silicane electron affinity. The mismatch
between the Al and silicane band structures causes an inversion
of the carrier density in the silicane layer below the Al.

Our model makes it possible to investigate different metal-
semiconductor combinations. Additionally, the flexibility of
our model allows us to investigate the effect of different

material properties on the quality of the contact and the nature
of current flow through the contact.



V. REFERENCES

[1] K. Schauble, D. Zakhidov, E. Yalon, S. Deshmukh, R. W. Grady, K. A. Cooley, C. J. McClellan, S. Vaziri, D. Passarello, S. E. Mohney, M. F. Toney,
A. K. Sood, A. Salleo, and E. Pop, “Uncovering the effects of metal contacts on monolayer MoS2,” ACS Nano, vol. 14, no. 11, pp. 14 798–14 808,
2020. [Online]. Available: www.acsnano.org

[2] A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model,”
Nat. Commun., vol. 6, 2015. [Online]. Available: www.nature.com/naturecommunications

[3] A. Prakash, H. Ilatikhameneh, P. Wu, and J. Appenzeller, “Understanding contact gating in Schottky barrier transistors from 2D channels,” Sci. Rep.,
vol. 7, no. 1, 2017. [Online]. Available: www.nature.com/scientificreports/

[4] S. Banerjee, L. Cao, Y. S. Ang, L. K. Ang, and P. Zhang, “Reducing contact resistance in two-dimensional-material-based electrical contacts by roughness
engineering,” Phys. Rev. Appl., vol. 13, no. 6, p. 64021, 2020.

[5] Y. Pan, S. Li, M. Ye, R. Quhe, Z. Song, Y. Wang, J. Zheng, F. Pan, W. Guo, J. Yang, and J. Lu, “Interfacial Properties of Monolayer MoSe2-Metal
Contacts,” J. Phys. Chem. C, vol. 120, no. 24, pp. 13 063–13 070, 2016. [Online]. Available: https://pubs.acs.org/sharingguidelines
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