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Abstract—We calculate the resistivity of Schottky edge
contacts between a metal and a transition-metal dichalco-
genide (TMD) thin layer. The electrostatic potential
is obtained by solving numerically the Poisson equa-
tion; the transmission probability is computed using the
Wentzel–Kramers–Brillouin (WKB) approximation using
the full-band density of states obtained from density
functional theory (DFT); the effect of the image force is
obtained analytically using the Green’s function for the
Poisson equation with boundary conditions appropriate to
the geometry we have considered. We find that the dielectric
environment surrounding the 2D layer largely controls
the electrostatics and image-force barrier lowering. Low-
resistance metal-TMD Schottky edge contacts are obtained
using low-κ top and bottom insulators.

Index Terms—metal/TMD, edge contact, WKB, 2D Pois-
son, image force, dielectric

I. INTRODUCTION

A low contact-resistance is desirable for obtaining a
high on-current in field-effect transistors (FETs) based
on TMD layers. However, metal/TMD contacts are
characterized by high Schottky barriers [1]–[5] which
severely limit the drive current in such devices. Semicon-
ducting MoS2, one of the widely studied TMD channel
materials in 2D FETs, is usually affected by a contact
resistivity larger than 1 kΩ µm [1]–[4]. One of the low-
est contact resistances reported for multi-layer MoS2

FETs is 0.54 kΩ µm with an on-current of 830 µA/µm
at 300 K [6]. Though there has been an extensive
experimental investigation of the contact geometry in
2D FETs, theoretical studies are limited. Therefore, a
physical understanding of the carrier-injection mecha-
nism for practical device configurations still needs to
be developed. A model incorporating ab initio quantum
transport simulations to predict the influence of transfer
length, interfacial oxide on the carrier injection process
through metal-TMD contacts has been reported recently

[7]. Other studies on the modeling of the resistance of
metal-TMD contacts employ a simplified picture [8], [9].
None of the studies account for effect of the surrounding
dielectrics, an effect which is known to be important in
such 2D geometry [10], [11].

Here we present results obtained using a theoretical
and numerical model to evaluate contact resistance in
realistic metal-2D edge contact in which the resistivity
is controlled mainly by the Schottky barrier. Our model
uses the full-band density of states obtained from DFT
calculations for MoS2 and the WKB approximation to
calculate the transmission probability through the Schot-
tky barrier at the metal-MoS2 interface. We organize the
presentation as follows: We first describe the numerical
and mathematical approach to solve the contact resis-
tance starting from DFT calculations. Next, we present
our results, discussing the values of the contact resistance
we have obtained, emphasizing the role played by the
different choices of parameters we have used. Finally,
we draw our conclusions.

II. METHOD

DFT calculations have been performed using the Vi-
enna Ab initio Simulation Package (VASP) [12]–[15].
We have employed the generalized gradient approxima-
tion (GGA) with the projector augmented wave (PAW)
method [16] using the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [17] and the Heyd-
Scuseria-Ernzerhof (HSE06) hybrid functional [18].
DFT-D3 dispersion correction of Grimme [19] was used
to describe van der Waals interactions and accurately
calculate the interlayer distance. A cut-off energy of
400 eV has been used. We sampled the Brillouin zone
with Γ-centered 25×25×1 and 10×10×6 k-meshes in
monolayer and bulk MoS2 respectively. We set the
electronic convergence at 10−6eV whereas the struc-
tural geometry was optimized until the maximum force
on every atom fell below 0.01 eV/Å. A large vacuum978-1-6654-0685-7/21/$31.00 ©2021 IEEE



padding of 30Å was used along the z direction to avoid
interaction between adjacent layers.

In Fig. 1 we illustrate the geometry we have consid-
ered: A semi-infinite TMD monolayer material is sand-
wiched between very thick top and bottom dielectrics
(tdielectric � t2D), with a metal contact at the left.
We assume the contact to clamp the potential at the
metal-TMD/metal-oxide interface; that is, the metal is
assumed to be region of constant potential. We have

considered the specific case of n-type monolayer MoS2

as channel material, but the results will apply to other
TMDs as well. We consider transport along the x direc-
tion and translational invariance along the y direction.
Anisotropic dielectric permittivity values are considered
for monolayer MoS2 [20].

The Schottky-barrier-limited contact resistivity [21]
has been calculated from the ballistic conductance of
the monolayer TMD, modulated by the Schottky
barrier according to the following equation:
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where ρc is the resistivity, e is electronic charge, h
is Planck’s constant, f(E) is the fermi distribution at
energy E and (kx, ky) are wave vectors. The Bloch

wave dispersion, En(kx, ky), is obtained from the
DFT calculations in VASP, and n stands for each
conducting mode. The transmission probability was
calculated using the WKB approximation as follows:
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where, m∗n(ky) and En,min(ky) are the effective mass
and the energy band dispersion minimum, respectively,
as a function of ky for the nth conducting mode, xmax is
the maximum length of the depletion potential, E is the
energy of the carriers, U(x) is the Schottky depletion
potential with built-in potential barrier φbi = (φM −
χS) − (EC − EF), where φM, χS, EC and EF are the
metal work function, monolayer TMD electron affinity,
conduction band edge and Fermi level respectively.

The potential was computed by solving 2D Poisson’s
equation (in the (x, z) plane) self consistently with
the full-band density of states using a finite-elements
based package FEniCS [22], [23]. Dirichlet boundary

conditions were imposed at the metal contact side and
Neumann boundary conditions on the other sides (thus
ignoring any effect of a gate bias). The 2D Poisson’s
equation is as follows:

∇ · ∇[ε◦ε(r)V (r)] = e(ND − ρ) (3)

where, ND and ρ are doping concentration and electron
density respectively, V (r) is the potential energy and
ε(r) the spatially varying dielectric permittivity in the
geometry shown in Fig. 1.

For calculating image force barrier lowering, we
first compute the Coulomb kernel for a charge particle
in the middle for the configuration shown in Fig. 2.

V̂ (Q, z = 0) = −2e2aβQ [ε2D cosh (aβQ) + εbot sinh (aβQ)] [ε2D cosh (aβQ) + εtop sinh (aβQ)]

ε2DQ[(ε2D − εtop)(εbot − ε2D) + (ε2D + εtop)(ε2D + εbot)e4aβQ]
(4)

where, εtop and εbot are the top (z > a) and bottom
(z < a) oxide dielectric permittivity, the thickness of
the middle 2D layer (−a < z < a) is 2a, ε2D =

√
ε‖ε⊥

and β =
√

ε‖
ε⊥

, where ε‖ and ε⊥ are the in-plane and
out-of-plane dielectric constants of monolayer MoS2.

Finally, the real space potential V (x) at (x, z = 0) due
to the point charge at (x, z = 0) is obtained numerically
[24] by 2D Fourier-Bessel or Hankel transform of Eq.

(4) and is given as follows.

V (x) =
e

2π

∫ ∞
0

V̂ (Q, z = 0)J0(xQ)QdQ (5)

where, J0 is the Bessel function of the first kind of order
zero.

For edge contacts, the method of images is used to
account for the constant potential at the metal contact.



Metal

(a)

Top oxide

t2D

Bottom oxidetdielectric

(b)

x

y
z

Monolayer MoS2

Monolayer MoS2

Fig. 1: (a) Edge contact geometry considered in our model. (b) 2D cross-section
of the edge contact geometry (metal not shown). The middle layer is monolayer
MoS2 with a thickness t2D, sandwiched between infinitely thick top and bottom
insulators.
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Fig. 2: Schematic of the system where we compute the Coulomb kernel with a
point charge located at z = 0. The top and bottom oxides have a homogenous
isotropic permittivity, whereas the middle (2D) semiconductor has anisotropic
permittivity.

The image potential is the (negative) work done to
bring a charge from infinity to a distance x from the
metal-2D interface (at a distance 2x from the image
charge) and is found to be equivalent to 1/2 V (2x).
The image potential is then added to the depletion
potential calculated numerically in order to obtain the
total potential.

III. RESULTS AND DISCUSSION

Fig. 3 shows our main result, the calculated contact
resistivity as a function of doping concentration in an
edge contact MoS2 monolayer with either SiO2 or HfO2

as top and bottom insulators, and bulk MoS2, for a fixed
Schottky-barrier height of 0.3 eV. We see increasing the
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Fig. 3: Calculated contact resistivities for bulk and monolayer MoS2 edge
contacts. MoS2 sandwiched between SiO2 or HfO2 labeled as MoS2/SiO2 and
MoS2/HfO2 respectively.
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Fig. 4: Potential energy for MoS2/SiO2, MoS2/HfO2 and bulk, along the
transport direction x for a Schottky barrier height of 0.3 eV and a doping
concentration ND = 1× 1012/cm2.

doping reduces the resistivity, a trend which is consistent
with what is observed in metal/bulk-semiconductor con-
tacts. Interestingly, we find that the presence of a low-κ
surrounding dielectric, such as SiO2, results in a lower
resistivity than its bulk counterpart.

Indeed, the surrounding dielectrics affect very strongly
the electrostatic behavior of such 2D geometries, control-
ling both the width of the depletion region as well as the
barrier lowering due to the image force. The first effect
is illustrated in Fig. 4 which shows the potential energy
in the center of the MoS2 channel. The depletion width
is smallest in the bulk-TMD geometry and increases
with increasing dielectric constant of the surrounding
dielectrics, being largest in the case of HfO2. Obviously,
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Fig. 5: Potential energy in the monolayer calculated ignoring image-force barrier-
lowering (black solid line), the “correct” 2D solution (red dashed line), and the
bulk model for the barrier lowering (blue dashed-dot and green dotted lines,
using TMD or insulator permittivity, respectively), for a Schottky barrier height
of 0.3 eV and a doping concentration ND = 1 × 1012/cm2, where top and
bottom oxides are (a) SiO2 and (b) HfO2.

a larger depletion width results in a thicker tunneling
barrier and, so, in a reduced transmission probability.
This is reflected in higher values of contact resistance in
MoS2/HfO2.

The second effect, the image force barrier lowering
(IFBL), consists in the reduction in effective barrier
height due to the image charges inside the metal contact,
as required to maintain the metal region at a constant
potential. The role played by the IFBL is illustrated in
Fig. 5 that shows the potential energy as in Fig. 4, but
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Fig. 6: The image potential plotted as a function of the distance from the metal-
TMD interface in MoS2/SiO2 (correct solution), MoS2/HfO2 (correct solution),
and using the conventional model with insulator permittivity (labeled as SiO2 and
HfO2) or TMD permittivity (labeled as MoS2). For x� t2D, the conventional
bulk model (using insulator permittivity) matches the correct solution but fails
when x� t2D.

now accounting for the IFBL for a fixed doping con-
centration in the two extreme cases of SiO2 (Fig. 5(a))
and HfO2 (Fig. 5(b)). The magnitude of barrier lowering
is the difference between the peak of the no-IFBL and
IFBL potential energies (shown by the arrow in Fig. 5).
We find that barrier lowering is greater in MoS2/SiO2

than MoS2/HfO2 and leads to a reduction in contact
resistivity. This results from the effect of surrounding
dielectric on the image potentials.

Finally, we show in Fig. 6 image potential for a point
charge located in the middle of the MoS2 monolayer
in the presence of different surrounding dielectrics. The
distance of the point charge from the metal interface is
denoted by x, and V (x) is the image potential. Asymp-
totically, we see that at distances much larger than the
layer thickness (x� t2D) the barrier potential behaves as
1/(εdielectricx), whereas when x � t2D, the 2D-material
dielectric constant dominates, as in the bulk case, and
the barrier-lowered potential behaves as 1/(ε2Dx). When
x ≈ t2D, a numerical evaluation is required to obtain the
correct result.

IV. CONCLUSION

We have developed a numerical model to study the
carrier injection mechanism through the Schottky barrier
at metal/2D-layer edge contacts and calculate the contact
resistance. We have shown how the surrounding dielec-
tric environment largely controls the electrostatics in this
2D geometry by considering cases with both low- and
high-κ top and bottom oxides. We have shown that low-κ
top and bottom insulators help in reducing the resistance,
thanks to a smaller depletion width and a higher image-



force barrier-lowering. Indeed, we have found that the
image-force barrier-lowering in these edge contacts is
determined by the dielectric permittivity of both the
surrounding oxide(s) and of the TMD. This contrasts
with bulk devices in which only the permittivity of the
semiconductor determines the magnitude of the barrier
lowering
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