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I. INTRODUCTION

For the last 15 years, two-dimensional (2D) materials are
being actively studied as a possible replacement for silicon.
Due to their layered nature, the materials can be scaled down to
a single atomic layer, favouring extreme device scaling. In ad-
dition, surface effects such as roughness, dangling bonds, and
interface states are also reduced/eliminated [1], [2]. Besides,
these materials confine charge carriers to atomic-thin lay-
ers, which provides excellent gate-control and reduces short-
channel effects [3]. Graphene (single layer graphite) was the
first of the 2D material to be isolated, and very high electron
mobility (>105 cm2/Vs) in its suspended state was reported
[4]. However, it does not have a bandgap, which is a severe
limitation for transistor applications (challenging to turn off
the device). Still, it initiated the discovery of other 2D materi-
als with a band gap, such as phosphorene (mono- or few-layer
black phosphorous) [5] and transition metal dichalcogenides
(TMDs) [6]. However, TMDs and phosphorene are found to
have lower intrinsic mobility when compared to graphene
[7], [8]. This can be attributed to the large electron-phonon
scattering present in these materials. Theoretical calculations
have predicted that, even in 2D material-based transistors of
channel lengths as small as about 5 nm, electron-phonon
scattering plays a significant role [9], [10].

To study the performance of 2D material-based devices,
quantum transport models, such as the non-equilibrium
Green’s function (NEGF) approach, are being developed to
consider both the non-equilibrium and quantum effects. Cur-
rently, the calculations performed for 2D materials include
scattering processes by approximating the self-energy terms
with constant deformation potentials calculated using the
Bardeen-Shockley approach (energy shift of the band edge
under isotropic strain) [11], which has shown to overestimate
the carrier mobility [8]. Another approach was adopted by
Lee et al. [12], where they scaled the self-energy terms in the
NEGF framework to fit the electron mobility obtained from
semiclassical models.

Our current work proposes an analytical approach of extract-
ing scattering parameters directly from full electron-phonon
matrix elements (calculated from first-principles) rather than
strained band structure calculations. These parameters are then

implemented in the NEGF formalism through the self-energy
terms. Considering monolayer tungsten disulfide (ML-WS2) as
an example, we verify these parameters’ validity by comparing
the electron mobility obtained from the NEGF method to
the one obtained from the semiclassical linearized-Boltzmann
transport equation (LBTE).

II. METHODS AND RESULTS

We use our in-house developed Real-Space NEGF solver,
ATOMOS [9], [13] for our transport calculations. It is a dis-
sipative NEGF solver based on the recursive Green’s function
(RGF) algorithm [14].

The electronic states are calculated from density functional
theory (DFT) as implemented in the Quantum Espresso pack-
age [15]. The Bloch states obtained are then transformed into
maximally-localized Wannier functions (MLWF), which are
centred on the ions, using Wannier90 code [16]. For the DFT
calculations, we use Perdew-Burke-Enzerhoff generalized gra-
dient approximation (GGA-PBE) for the exchange-correlation
functional [17] and Ultrasoft pseudopotentials. The resulting
information, including atomic positions, lattice vectors and
localized tight-binding type Hamiltonian matrix elements are
used to build full-device structure.

Electron-phonon scattering is included in the NEGF for-
malism through the self-consistent Born approximation [18].
Assuming that the phonons stay in equilibrium, the scattering
self-energy term (Σ<(E)) is written as [9]:

Σ<(E) =
∑
q

|Mq|2[(Nq+1)G<(E+~ωq)+NqG
<(E−~ωq)],

(1)
where Mq is the electron-phonon coupling matrix element in
the localized-orbital basis, G< is the lesser Green’s function,
Nq is the Bose-Einstein distribution, E is the scalar electron
energy and ωq is the phonon frequency.

Our approach includes elastic and inelastic scattering by
acoustic phonons and inelastic scattering by optical phonons
by approximating the self-energy terms with analytical ex-
pressions [9]. For elastic acoustic phonon scattering, the self-
energy term can be approximated as:

Σ<elastic = M2
elasticG

<(E), (2)978-1-6654-0685-7/21/$31.00 ©2021 IEEE



Fig. 1. Phonon dispersion of ML-WS2 plotted along the high-symmetry lines.

with

M2
elastic =

∆2
elastickBT

ρV v2p
, (3)

where ∆elastic (eV) is called the “effective” deformation
potential for elastic acoustic phonon scattering, ρ is the mass
density, V is the mesh volume, vp is the sound velocity. The
above expression is valid only for acoustic modes with a linear
dispersion near the Γ symmetry point. As shown later, for 2D
materials, only the in-plane acoustic phonons (TA and LA)
have a linear dispersion. The out-of-plane acoustic phonons
or ZA phonons have a parabolic dispersion and in certain
2D materials (silicene, germanene), which lack horizontal (σh)
mirror symmetry, electron-ZA phonon scattering is significant
[19]. However, in most of the 2D materials of interest, such as
2H-TMDs and phosphorene coupling to ZA phonons is found
to be negligible thanks to the σh mirror symmetry [20].

The self-energy term for inelastic scattering by acoustic and
optical phonons can be approximated as:

Σ<inelastic = M2
inelastic

(
NB +

1

2
± 1

2

)
G<(E ± Eph), (4)

with

M2
inelastic =

∆2
inelastic~2

2ρV Eph
, (5)

where ∆inelastic (eV/m) is the “effective” deformation po-
tential for inelastic scattering, Eph is the optical phonon
energy or the zone edge acoustic phonon energy, and NB is
the Bose-Einstein distribution calculated at constant phonon
energy Eph. The parameters (∆elastic, ∆inelastic, Eph and vp)
needed to evaluate Melastic and Minelastic can be extracted
from the full phonon dispersion and electron-phonon matrix
elements, which can be calculated using the density functional
perturbation theory (DFPT) approach [15], [21]. Considering
ML-WS2 as an example, we show below the procedure to
extract these parameters.

Fig. 2. DK and ∆elastic plotted for LA phonons as a function of the angle
of the final wavevector formed with respect to Γ −K direction.

In Fig 1, we show the phonon dispersion calculated for ML-
WS2 using the DFPT approach as implemented by the Quan-
tum Espresso software package [15], [22]. ML-WS2 has nine
phonon branches, three acoustic and six optical branches. As
mentioned above, the ZA phonons has a parabolic dispersion
near the Γ symmetry point. The coupling between electrons
and ZA phonons is negligible in ML-WS2 due to σh mirror
symmetry. Parameters such as Eph and vp are extracted from
the phonon dispersion.

The plane-wave based electron-phonon coupling matrix
elements calculated from DFPT are of the form:

Mmnλ(k,q) =

(
~

2Mcellωqλ

)1/2

DKmnλ(k,q), (6)

where k and k′ = k − q are the intial and final electron
wavevector, q is the corresponding phonon vector, λ denotes
different phonon modes, m and n are the initial and final band
indices, Mcell is the total mass of the unit cell and DK is
called the deformation potential. For small q vectors (elastic
scattering regime), DK and ∆elastic for in-plane acoustic
phonons can be related as: DK ≈ ∆elastic|q|. Therefore, to
extract ∆elastic, we calculate DK from the matrix elements,
for the same initial and final electron energies (taking initial
wavevector k and final wavevector k′ on an equienergy
surface), as functions of the scattering angle (angle of the
final wavevector k′ formed with respect to the direction of the
initial wavevector k.). ∆elastic is then obtained by dividing
DK by the magnitude of the phonon wavevector (|q|). In
Fig 2 we show DK and ∆elastic plotted as a function of the
scattering angle for monolayer WS2. We find that ∆elastic can
be approximated as a constant due to isotropic band structure
in WS2.

For inelastic phonon scattering, DK ≈ ∆inelastic. There-
fore, we calculate DK from the matrix elements for optical
phonons and zone edge acoustic phonons by considering an
initial wavevector k at the conduction band minima and the
final wavevector k′ on an equienergy surface of energy equal
to the constant phonon energy Eph. In Fig. 3, we show
∆inelastic for two major contributing optical phonons and their
corresponding phonon energies, Eph in WS2. Similarly, in



Fig. 3. DK and ωq for optical phonons plotted as a function of the angle
of the final wavevector formed with respect to Γ −K direction.

Fig. 4. DK and ωq for zone-edge acoustic phonons plotted as a function of
the angle of the final wavevector formed with respect to Γ −K direction.

Fig. II, we show ∆inelastic for zone-edge acoustic phonons.
In both cases, the DK obtained can be approximated as a
constant over the scattering angle.

In Fig. 5, we show the mobility calculated from the NEGF
approach by the dR/dL method [23] and intrinsic mobility
calculated from LBTE using PERTURBO software [21]. The
LBTE method uses full-bands and full electron-phonon scat-
tering matrix elements( from first-principles calculations) to
calculate electron mobility. The results are found to be in good
agreement between both methods.

Our analytical approach is computationally efficient and can
be a good approximation for constant “effective” deformation
potentials. The deformation potentials can be approximated
as constants for 2D materials with isotropic band structures,
such as 2H-TMDs. However, in the case of anisotropic 2D
materials like phosphorene, the deformation potentials have an
angular dependence. In addition, for 2D materials which lack
σh symmetry, the coupling with ZA phonons is not negligible.
Therefore, we are currently working on implementing full
electron-phonon matrix elements in the NEGF framework to
study these materials accurately.

Fig. 5. Electron mobility for ML-WS2 calculated from dR/dL method and
LBTE.
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