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Abstract—As the interest in spin-transfer torque 

magnetoresistive memories for embedded and stand-alone 

applications is growing, reliable simulation tools are needed to 

help design and improve these devices. In this paper, we present a 

finite element implementation of the drift-diffusion approach for 

coupled spin and charge transport, commonly applied in metallic 

valves, to compute the torques acting in a magnetic tunnel junction 

which constitutes the cell of modern spin-transfer torque 

memories. We investigate the dependence of the torques on system 

parameters and demonstrate that it is possible to employ the 

drift-diffusion approach to reproduce the torque magnitude 

expected in magnetic tunnel junctions. We further show that a full 

3D solution of the equations is necessary in order to accurately 

model the torques acting on the magnetization. The use of a unique 

set of equations for the whole memory cell constitutes the basis of 

an efficient finite element based approach to rigorously describe 

the switching process of novel spin-transfer torque memories. 
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I. INTRODUCTION 

Spin-transfer torque magnetoresistive random access 

memory (STT-MRAM) represents an emerging solution to the 

increased stand-by power consumption and leakages of CMOS 

devices. It is suitable for IoT and automotive applications, as 

well as for embedded DRAM and last level caches [1]-[7]. 

Improvements in the design of modern STT-MRAM devices 

are supported by the development of accurate simulation tools. 

The dynamics of the magnetization can be described by the 

Landau-Lifshitz-Gilbert (LLG) equation 
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where m= 𝐌 𝑀𝑆⁄  is the position-dependent normalized 

magnetization, 𝑀𝑆  is the saturation magnetization, α  is the 

Gilbert damping constant, γ is the gyromagnetic ratio, 𝜇0 is the 

vacuum permeability, and Heff is the effective magnetic field, 

containing various contributions such as the external field, the 

exchange interaction, the anisotropy field, and the 

demagnetizing field.  

Modeling of STT switching can be performed by assuming 

a Slonczewski-like torque expression [8] 
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where ħ is the reduced Plank constant, e is the electron charge, 

JC is the current density, d is the thickness of the free layer, 𝑃𝐹𝐿  

and 𝑃𝑅𝐿  are the polarizations of the free (FL) and reference 

layer (RL), respectively, θ is the angle between magnetization 

vectors in the FL and RL, and x is the magnetization direction 

of the RL. This approach, however, permits to only simulate the 

dynamics of a thin free layer. A more complete description of 

the process is achieved by computing the spin accumulation 𝐒 

across the whole structure. 

II. SPIN DRIFT-DIFFUSION EQUATIONS 

The drift-diffusion equations for the spin accumulation and the 

resulting expression for the torque acting on the magnetization 

are  
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where 𝜇𝐵  is the Bohr magneton, 𝛽𝜎  and 𝛽𝐷  are spin 

polarization parameters, 𝐷𝑒  is the electron diffusion 



coefficient, 𝜆𝑠𝑓  is the spin-flip length, 𝜆𝐽  is the exchange 

length, and 𝜆𝜑 is the spin dephasing length.  

This formalism has been successfully applied to metallic 

spin-valves with a non-magnetic spacer layer by solving the 

spin and charge drift-diffusion equations [9],[10]. The core 

element of modern STT-MRAM devices is, however, a 

magnetic tunnel junction (MTJ), with a tunnel barrier (TB) 

between the ferromagnetic layers (FM). The drift-diffusion 

approach thus must be extended to reproduce the torque 

expected in MTJs. The strong dependence of the large 

resistance on the relative magnetization vector orientation in the 

FL and the RL, described by the tunneling magnetoresistance 

ratio (TMR), can be reproduced by modeling the tunnel layer 

as a poor conductor with a low conductivity which incorporates 

the expected angular dependence [11]. This permits to obtain 

the electric current 𝐉𝐂  entering (3a). The obtained current 

density, computed in the structure showcased in Fig. 1 for non-

uniform FL magnetization configuration, parallel in the center 

and anti-parallel on the sides, is reported in Fig. 2.  

We investigate the dependence of the average value of the 

damping-like torque in the FL on various system parameters, in 

order to calibrate our approach and reproduce the value 

predicted by Slonczewski. To compute the spin accumulation, 

we employ a Finite Element (FE) solver, implemented with the 

open source library MFEM [12]. 

III. SIMULATION RESULTS 

We carried out simulations with a uniform magnetization 

along the x-direction in the RL and in the z-direction in the FL. 

Fig. 3 shows the dependence of the torque on the exchange 

length and on the diffusion coefficient 𝐷𝑆 of the tunnel layer. In 

this approach 𝐷𝑆 is a parameter to be chosen properly in order 

to reproduce the behavior of the spin accumulation and torques 

in an MTJ. The torque is very small at low values of 𝐷𝑆, while 

high values enhance the torque, as the slope of S reduces to the 

point of being practically preserved across the barrier. The 

torque is also enhanced by a lower value of 𝜆𝐽, as in this case 

the transverse components of the spin accumulation are 

 

 

Fig. 1. MTJ structure used in the finite element simulations. The 

magnetization in the RL is fixed, the one in the FL is free to switch. 

NM are non-magnetic contact layers. 

 

Fig. 2. Current density magnitude obtained for non-uniform 

magnetization configuration in the FL. The current is highly 

redistributed at the tunnel barrier interface to accommodate the 

varying resistance. 

 

 

Fig. 3. Dependence of the torque on the exchange length and on 

the diffusion coefficient of the TB. 

 

 

Fig. 4. Dependence of the torque on the exchange length and on 

the diffusion coefficient of the FM layers. 



completely absorbed in the space of the FL. Fig. 4 reports the 

dependence on the diffusion coefficient of the FM layers, 

𝐷𝑒,𝐹𝑀, and on 𝜆𝐽. The interplay between these two parameters 

is such that a lower 𝐷𝑒,𝐹𝑀 both enhances the torque and makes 

it more dependent on the exact value of the exchange length. 

The dependence on the polarization parameters 𝛽𝜎,𝐹𝐿 and 𝛽𝜎,𝑅𝐿 

of the FL and RL, respectively, was also investigated. The 

results are reported in Fig. 4. The value of the torque in the FL 

mainly depends on the polarization of the RL, while it is almost 

constant with respect to the one of the FL, for every value of 

𝛽𝜎,𝑅𝐿. This suggests that, in our approach, these parameters are 

analogous to the current polarization entering the Slonczewski 

expression. 

With the choice of parameters given in Table 1, we obtain a 

torque magnitude of 2.02 ∙ 1015 A/(m ∙ s), compatible with the 

one computed with the Slonczewski approach (2) of 2.03 ∙
1015 A/(m ∙ s) . The drift-diffusion approach is thus able to 

reproduce the torque magnitude expected in magnetic tunnel 

junctions. It also permits to compute the torque acting both on 

the FL and the RL. In Fig. 5, the spin accumulation and torque 

computed by the FE solver are compared to an analytical 

solution, obtained by extending the results presented in [13] to a 

multi-layered structure, showing that our results are in perfect 

agreement.  

The main advantage of the FE implementation is the 

possibility to compute 𝐒  with non-uniform magnetization 

configurations, typical for switching in complex structures. 

Thus, we investigate the difference between combining 

analytical solutions for the magnetization orientation at various 

y- and z-coordinates and computing the full 3D solution (Fig. 6). 

We compute the torque for the same magnetization 

configuration employed for the evaluation of 𝐉𝐂. It can be seen 

that the first approach fails to account for the redistribution of 𝐒 

due to local gradients in the magnetization, such that the full 

solution computed by the FE solver is mandatory in order to 

properly model the torque acting on the magnetization. 

IV. CONCLUSION 

We employed a finite element implementation of the drift-

diffusion approach for the computation of the torques acting in 

 

Fig. 4. Dependence of the torque on the polarization of the FL and 

the RL. 

TABLE I.  PARAMETERS 

Parameter Value 

𝛽𝜎  0.7 

𝛽𝐷 0.8 

𝐷𝑒,𝑁𝑀 1x10-2 m2/s 

𝐷𝑒,𝐹𝑀 1x10-4 m2/s 

𝐷𝑆 5x10-1 m2/s 

𝜆𝑠𝑓 10 nm 

𝜆𝐽 0.5 nm 

𝜆𝜑 5 nm 

 

 

                        

Fig. 5 Comparison of the spin accumulation (left) and torque (right) computed analytically and with the FE solver.  



a magnetic tunnel junction. We investigated the dependence of 

the spin-transfer torque on system parameters, and showed that 

our approach can reproduce the torque magnitude expected in a 

magnetic tunnel junction. Furthermore, we compared the finite 

element results with a known analytical solution, which was 

optimally reproduced by the solver. Finally, we showed that a 

full 3D solution is necessary in order to properly account for 

the redistribution of the torque due to local gradients of the 

magnetization. The drift-diffusion solver can then be applied to 

determine the magnetization dynamics in modern STT-MRAM 

devices. 
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Fig. 6 Torque obtained combining multiple analytical solutions (left) compared to the one obtained by the FE solver (right). 


