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Abstract— In this work, we employ density functional theory 

with HSE hybrid functionals (HFs) to calculate the electronic band 

structure of Si, Ge, diamond, and SiC in an attempt to improve 

upon electron-phonon scattering rates calculated with 

conventional PBE exchange-correlation functionals. To check for 

possible improvements, the band structure of each material 

calculated with the PBE functional is compared to that obtained 

with HSE HFs. The first point of comparison is the effective 

electron mass at the conduction band (CB) minimum. These values 

are calculated and compared to experimental data. In addition, 

the joint density of states (JDOS) is calculated for each material. 

Peaks and shoulders in the JDOS plot (representing transition 

energies at symmetry points in the band structure) are compared 

to the values obtained experimentally. The results show that there 

is no consistent improvement in the calculated effective masses or 

symmetry point locations from PBE to HSE, suggesting a 

‘compression’ of the CB that may affect the calculated electron-

phonon scattering rates.  
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scattering rates. 

I. INTRODUCTION  

The theoretical investigation of phonon-limited electron 
transport in semiconductors has been key to the development of 
virtually all modern electronic devices. A vital part of this study 
is the accurate calculation of the electron-phonon scattering 
rates. Currently, one of the most prevalent methods to perform 
this calculation is density functional theory (DFT). It is used to 
produce the electronic band structure (band structure), phonon 
dispersion, and subsequently, electron-phonon matrix elements 
of a given material, which can be used in Fermi’s Golden Rule 
to obtain scattering rates. Given the built-in assumptions of 
DFT, and the fact that it is a “ground state” theory, the success 
it has thus far achieved in transport calculations is truly 
remarkable. Still, while DFT has become an extremely useful 
computational tool, problems remain [1,2]. 

Indeed, even in Si things are “iffy”, as recently published 
works show contradictions in electron scattering and energy loss 
rates [3,4]. One of the major issues associated with DFT is a 
“compression” of the conduction bands (CBs). We believe this 
compression, unfortunately, affects the scattering rates for two 
reasons: Firstly, the electron-phonon matrix elements are shifted 
in energy due to this compression and, secondly, the density of 
final states available to scattering carriers is increased, as a result 
of band flattening. Much of the trouble in DFT arises from the 
approximation of the exchange-correlation functional in the 

Kohn-Sham equations [5]. A common exchange-correlation 
functional that is widely used is the generalized gradient 
approximation (GGA) PBE functional [6]. Over the years, 
corrections to the exchange-correlation functional have been 
proposed to generate more accurate results. One of these is HSE 
hybrid functionals (HFs) [7], which mix a fraction of exact 
exchange from Hartree-Fock theory with the rest of the 
exchange-correlation energy from PBE. HSE HFs have been 
widely used to correct the primary band gap [8], and claims have 
even been made that they yield more accurate effective electron 
masses at the CB minimum [9]. In this paper, we investigate the 
use of HSE HFs to improve the calculated electronic band 
structure of Si, Ge, diamond, and SiC over the band structure 
calculated with conventional PBE functionals in attempts to 
solve the CB compression issue. 

II. METHODOLOGY 

To begin, we calculated the band structures for the 
abovementioned materials, using the DFT package Quantum 
ESPRESSO (QE). As described above, the band structure was 
calculated for each material using both the conventional PBE 
and HSE methods. Going forward, we will refer to them as PBE 
and HSE, respectively. For both cases, fully relativistic SG15 
Optimized Norm-Conserving Vanderbilt (ONCV) 
pseudopotentials were used. We included spin-orbit coupling in 
the calculations. In the case of HSE, we employed a trial-and-
error process to determine the respective fractions of exact 
exchange for each material (Si: 0.07, Ge: 0.08, diamond: 0.11, 
SiC: 0.1) that yield a value for the band gap closest to the 
available experimental data.  

To demonstrate the effects of the CB compression on 
electron-phonon scattering rates, we further used density 
functional perturbation theory (DFPT) in QE to generate the 
phonon dispersions for each material. These dispersions, with 
the electronic band structure, were fed into the code Electron-
Phonon Wannier (EPW) to obtain electron-phonon matrix 
elements [10]. With these matrix elements, we then used 
Fermi’s Golden Rule, 
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to calculate scattering rates, 1 ��
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matrix element for scattering from state i to state j by a phonon 



q of mode η, ��  and ��  are the initial and final energies, 

respectively, and ħ��
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 is the energy associated with the 

phonon q of mode η. The determination of the density of final 
states was carried out using the tetrahedron method, a common 
numerical technique used for Brillouin zone (BZ) integration 
[11]. 

To observe the differences between the PBE and HSE band 
structures, we selected two points of comparison. These include 
first, the effective electron masses at the CB minimum and 
second, the energies associated with direct transitions across the 
energy gap at certain symmetry points in the BZ. Indeed, 
experimental data on the electron effective mass are widely 
available, and this quantity is a good indicator of how well the 
transport characteristics of a material will match experiment. 
Second, experimental information on the energies of direct 
transitions at symmetry points is also widely available from the 
dielectric function, electro-reflectance, and optical absorption 
spectra, for example. This information can help us to quantify 
and visualize the CB compression. 

To determine the effective masses, we fit polynomials to the 
band structure data of each material at the CB minimum and 
extracted the longitudinal and transverse effective masses. 

For the energies at symmetry points, we calculated the joint 
density of states (JDOS), again with the tetrahedron method. 
The JDOS is the density of states associated with direct 
transitions from the highest valence band (VB) into the CBs, 
and it is defined as: 
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where () is the unit cell volume, m indicates the CB index, and 
n is the index of the highest VB. A large JDOS indicates a high 
likelihood of a given transition. Peaks and shoulders in the 
JDOS vs. energy plot represent transitions at symmetry points. 
Therefore, the JDOS plot can be compared to measured 
energies of transitions at symmetry points to check for the 
accuracy of the band structure results. For this comparison, we 
shifted the CB energy so that the energy gap was corrected, 
since conventional DFT calculations underestimate this value. 

III. RESULTS AND DISCUSSION 

To first observe the CB compression, we plotted the band 
structure of Si in Fig. 1. The compression can be seen by looking 
at the energy distances between the CB minimum and Lc1 and 
Lc2.  Experimentally, these distances have been found to be 1.05 
eV and 3.13 eV, respectively [12]. In the calculated band 
structure, however, these distances are shrunk to 0.83 eV and 
2.73 eV: reductions of 21% and 13%, respectively. The effect of 
this CB compression on the electron-phonon scattering rates is 
a compression of the rates to lower energies and a general 
magnification. This can be seen by comparing our PBE results 
in Fig. 2 (b) to scattering rates published by other groups in Fig. 
2 (a).  It is clear that our results agree with the PBE rates in Fig. 
2 (a), but they are as much as ~45% larger than the others, which 
were calculated using empirical pseudopotentials and Harris 
potentials and have yielded transport-related results that 
compare successfully to experimental results (see Ref. [3]). 

 

Fig. 1. The CBs of Si, calculated using DFT with PBE plotted with respect to 
the bottom of the CBs. Lc1 and Lc2 indicate the L points of the first and second 
CBs, respectively. 

 

 

Fig. 2. (a) Electron-phonon scattering rates of Si (averaged over equi-energy 
shells), calculated using PBE functionals in EPW [3] compared to the rates 
published in [20,21,22] (adapted from [3]). (b) Rates that we have obtained 
using PBE in EPW. 

Having now established the existence of CB compression in 
the PBE case, we now look at the results from the HSE 
calculations. Table 1 shows both the energy gap and effective 
mass results for both PBE and HSE. It is clear that HSE HFs 
significantly improve the energy gap, as expected. For the 
effective masses, however, we see no consistent improvement. 

Looking now at the symmetry points, Fig. 3 shows the JDOS 
for each material. The experimentally measured direct 
transitions at the labeled symmetry points are shown by dashed 
lines. These same transitions, as calculated by PBE and HSE are 



indicated by triangles (lower-energy transitions) or dots (higher-
energy transitions). In all materials the transitions from PBE 
calculations occur at lower energies than the experimental data. 
This is yet another indication of CB compression. With the 
application of HSE, some decompression can be observed in all 
cases. The extent of decompression is clearly material-
dependent. In addition, we see variable decompression over the 
energy range for a given material. For example, in Si, there is 
decent decompression at the Lv-Lc1 transition, but scant 
decompression at the Lv-Lc2 transition. Overall, again, we 
observe no consistent improvement in the results with the 
application of HSE. 

With these rather disappointing outcomes from the effective 
mass and JDOS calculations, one would logically surmise that 
the HSE electron-phonon scattering rates would show little to no 
improvement over PBE rates. And, indeed this is what we 
observe in performing the calculation. The results are depicted 
in Fig. 4. In the HSE case, we used PBE electron-phonon matrix 
elements mixed with HSE density of final states in Fermi’s 

Golden Rule. This mixture was necessary because QE currently 
does not allow for the calculation of electron-phonon matrix 
elements with HFs. Still, this calculation gives a good first 
approximation of the HSE rates. We recall now, from Fig. 2, that 
the two major effects of the CB compression on the scattering 
rates were a shift to lower energies and an overal increase in 
magnitude. It is evident from the plots that the HSE rates exhibit 
some shift toward higher energies, especially in diamond and 
SiC. This, of course, is related to the decompression of the CBs 
observed in Fig. 3. The shift, however, is small and, in some 
cases, nonexistent.  Additionally, there is very little reduction in 
magnitude seen, and it only seems to occur in spots. Given that 
the Si rates in Fig. 2 were as much as 45% larger than the 
experimentally verified rates, there would need to be a much 
more significant reduction. Generally, therefore, there appears 
to be no substantial improvement in the rates with the use of 
HSE.   

Material 

Gap (eV) Effective mass 

Exp. PBE HSE 
Experiment PBE HSE 

mt/m0 ml/m0 mt/m0 ml/m0 mt/m0 ml/m0 

Si 1.12 0.5861 1.0898 0.19 [13] 0.98 [13] 0.2078 0.9736 0.2064 0.9564 

Ge 0.66 [14] -0.069 0.6341 0.082 [15] 1.59 [15] 0.213 1.7386 0.1802 1.6916 

Diamond 5.48 [16] 4.194 5.5243 0.36 [17] 1.4 [17] 0.3169 1.6563 0.2878 1.5933 

SiC 2.39 [18] 1.3865 2.3638 0.25 [19] 0.67 [19] 0.2421 0.6773 0.2427 0.6562 

Table 1. Calculated and experimental energy gaps and effective masses. Effective masses are measured in units of the free electron mass (m0). Here, mt and 
ml are the transverse and longitudinal masses, respectively. 

Fig. 3.  The JDOS of (a) Si, (b) Ge, (c) diamond, and (d) SiC adjusted to the correct energy gaps. Experimentally measured direct 
transitions are indicated by dashed lines. Their labels indicate which symmetry point transitions they represent. Subscripts ‘v’ and 
‘c’ refer to VBs and CBs, respectively, and the numbers refer to the CB number. Small shapes (triangle and dots) are used to 
indicate where these transitions occur on the PBE and HSE plots. For most of the plots, triangles refer to the lower-energy 
transition, while dots refer to the higher-energy transition. For diamond, only one transition is indicated with dots [12,23,24]. 



IV. CONCLUSIONS 

We have presented an investigation of the use of HSE HFs 
for the improvement of the DFT band structure calculation to 
obtain more accurate electron-phonon scattering rates. We have 
shown the results of effective mass, JDOS, and scattering rate 
calculations for both the conventional PBE and HSE HF cases. 
In both the effective mass and JDOS results, we observed no 
consistent improvement in the major problem associated with 
DFT of CB compression. While some decompression is seen, its 
extent is variable, even for the same material. Additionally, as 
seen in SiC, the decompression can go too far, pushing a given 
symmetry point to energies that are larger than experiments 
suggest. And, in finally looking at the scattering rate results, we 
demonstrated that the HSE rates were not substantially better 
than those from PBE. And, given that HSE is far more 
computationally expensive than PBE, any minor improvements 
may not be worth the cost. We therefore conclude that HSE HFs 
do not produce a necessarily more accurate band structure for 
transport calculations. 
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