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Abstract— In this paper, Long Short-Term Memory (LSTM) 

is used to predict transistor degradation due to Negative-Bias 

Temperature Instability (NBTI). The LSTM is trained by 

Technology Computer-Aided Design (TCAD) generated NBTI 

data and then used to predict the future degradation based on the 

future stress pattern (i.e. the future gate voltage sequence). It is 

also used to predict the degradation due to other random stress 

patterns at different frequencies. It is found that the LSTM 

trained by NBTI data due to random gate pulses at 100MHz clock 

frequency can 1) predict the NBTI due to other random gate 

pulses, 2) predict the NBTI up to 2 times longer time than it is 

trained for, and 3) predict the NBTI of 10 times higher and lower 

clock frequencies. Moreover, it can capture the Transient Trap 

Occupancy Model (TTOM) and Activated Barrier Double Well 

Thermionic (ABDWT) models well. It is shown that the 

framework works for both 2D and 3D simulations and, thus, can 

save a substantial amount of TCAD simulation time. 
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I. INTRODUCTION 

Negative-Bias Temperature Instability (NBTI) is an 
important degradation mechanism that has received a lot of 
attention in the modeling community [1]-[5]. Among them, 
Reaction-Diffusion (R-D) model is one of the most practical and 
promising ones that has been demonstrated in 3D FinFET NBTI 
modeling [2][3]. The R-D model is made complete by including 
the Transient Trap Occupancy Model (TTOM) [1] and the 
Activated Barrier Double Well Thermionic (ABDWT) model 
[6] to account for trap occupation and hole trapping/emission, 
respectively. However, AC transient simulation of NBTI under 
MHz-GHz gate voltage sequence is computationally intensive.  

In this paper, Long-Short-Term Memory (LSTM) [8], a type 
of recurrent neural network (RNN), is used. RNN has been 
shown to be promising in modeling transient circuit simulations 
[9][10]. Since LSTM can avoid the vanishing gradient problem, 
it is chosen in this study. It is assumed that some degradation 
data has been created through TCAD simulation under random 
gate pulses for a certain period of time. R-D model with TTOM 
and ABDWT is used for realistic and accurate simulations. The 

data are expressed as the average interfacial trap oxide (Nit) and 
the average hole trap charge (ABDWT charge) as a function of 
time and gate voltage sequence. An LSTM machine is trained 
using the TCAD data. The abilities of the trained machine to 
predict the degradation due to 1) unseen random gate voltage 
sequence, 2) future gate voltage sequence, and 3) unseen gate 
voltage sequence at different frequencies are studied. Both 2D 
and 3D TCAD simulation data are presented. 

II. TCAD SIMULATION AND DATA PREPARATION 

TCAD Sentaurus is used for 2D PMOS creation and 
simulation [7]. Besides the Poisson equation, and electron/hole 
continuity equations, hydrogen atom, and molecule diffusion 
equations are also solved. The density gradient equation is 
included to account for the quantum confinement effect. Multi-
State-Configuration (MSC) in Sentaurus Device is used to 
model the changing of the interface states (Si-H, X-H, Si+, Si, 
etc.) in the R-D model. TTOM and ABDWT are turned on. Fig. 
1 shows the structure created and the random gate pulses used 
in the TCAD simulations with VD = 0V and ambient temperature 
of 398K. 
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Figure 1: Left: The 2D structure used for TCAD simulation. 
Right: Random gate pulses used in the simulation. Only limited 
time is shown for clarity. Each curve is discretized by 1/10th of the 
period for machine learning. VG is between 0V and -1.9V. 



The training data, namely the interface trap density (Nit) and 
the ABDWT charge (oxide trapped charge), is generated by 
using a 100MHz clock (i.e. period = 10ns) with random gate 
pulses and the simulation results are discretized every 1ns. Three 
testing data with different random gate pulses, namely 10MHz, 
100MHz, and 1GHz, are generated (Fig. 1). Each of them is 
discretized at 1/10th of the corresponding period (e.g. 1GHz is 
discretized at 0.1ns interval). The simulation is performed on 
Intel Xeon Gold 6254 3.1GHz CPU. Every 1000 data points take 
about 5.4 hours. 

III. LSTM TRAINING 

5000 points, i.e. 5µs of data, from the training data are used 
to train the LSTM (Fig. 2). The LSTM is optimized and it is 
found that 2000-LSTM-unit performs the best. tanh is used for 
activation which provides a significant speedup over ReLU 
during training probably due to its less expensive gradient 
computation. Many-to-one LSTM architecture is used and the 
Nit or ABDTW charge at a certain time is determined by the 
previous 2000 gate voltages (VG) and times (t). Two LSTMs are 
trained, one for predicting Nit and one for predicting the 
ABDWT charge. They are trained for 883 and 251 epochs, 
respectively. The time required to train each machine is less than 
90 minutes on an NVIDIA Quadro GPU. 

IV. LSTM PERFORMANCE 

The trained LSTM is then used to predict the NBTI 
degradation process of the transistor under three unseen testing 
pulses.  

Prediction of new random gate voltage sequence and longer 
gate voltage sequence:  

Fig. 3 shows the prediction of unseen new random gate 
pulses at the clock frequency of 100MHz for 10µs. The LSTM 

can predict the change of Nit and ABDWT charge well over 10µs 

even it has not seen the pulses and it was only trained for 5µs. 
In particular, it can capture the fast recovery due to unoccupied 
traps (TTOM). The prediction process takes less than 1 minute 
which represents a significant speedup compared to the time 
required to simulation 10µs of new random gate pulses which 
will take about 54 hours. 

 Prediction of new random gate voltage sequence of different 
frequencies:  

The same models trained by the 5µs 100MHz data are then 
applied to predict the NBTI degradation of the same device at 
different frequencies (10MHz and 1GHz) for the same number 
of data points, i.e. 5000. Therefore, 50µs and 500ns of 
degradation are predicted for 10MHz and 1GHz data, 
respectively. Fig. 4 and Fig. 5 show the Seaborn joint plots of 
the LSTM prediction and TCAD simulation. Despite the model 
being used to predict the degradation at different timescale and 

 
 
Figure 2: LSTM used in this study. Two machines are built, one 

for predicting the Nit and one for predicting the ABDWT charge. 

 
 
Figure 4: Seaborn joint plots of TCAD and LSTM NBTI 
prediction for clock frequency of 10MHz using the model trained 

by 100MHz. Left: Nit. Right: ABDWT charge. 

 
Figure 3: Comparison between LSTM prediction and TCAD simulation for Nit (top) and ABDWT charge (bottom) for 100MHz testing data 

up to 10µs generated by unseen random gate voltage pulses for the 2D structure in Fig. 1. LSTM was trained by another set of 5µs 100MHz 

data. Orange: LSTM. Blue: TCAD. 



the Nit or ABDWT charge span a range of 100 times, the 
predictions are good. The R2 scores of 100MHz and 1GHz are 
larger than 0.98 and 0.94, respectively. 

V. STUDY OF LSTM PREDICTION CAPABILITY 

To further understand the role of the number of LSTM units 
and the capability and limitation of the LSTM machine, different 
LSTM machines are trained by 100MHz random gate voltages 
for different times, T1, namely 5µs, 10µs, and 20µs with 
different numbers of LSTM units (2000, 4000, and 8000). Their 
respective ability to predict the degradation in the next T1 
amount of time (e.g. next 20µs for the 20µs trained machine) is 
studied by comparing the R2 score. However, no trend can be 
concluded probably due to the competition between overfitting 
and length of historical gate voltage data. With more LSTM 
units, it is easier to have overfitting. On the other hand, more 
LSTM units can store a longer history of gate pulses and can 
help to predict future degradation better. Therefore, a careful 
choice of the number of LSTM units is important. For example, 
2000-unit is found to be the best for the 5µs and 10µs trained 

machines while 8000-unit is found to be the best for the 20µs 
trained machine. All these machines are trained for 1000 epochs. 

In all the studies conducted, LSTM trained by T1 amount of 
data usually can predict the degradation of the next T1 amount 
of time fairly well. This is shown in Fig. 3 and Fig. 6. In Fig. 6, 
the machine is trained by the first 10µs of data with 2000-LSTM 

units and it is used to predict the next 20µs (i.e. additionally 2T1). 

While it can predict the 10µs-to-20µs degradation well, the 

prediction of the 20µs-to-30µs one becomes worse. It can be 

seen that between 20µs to 30µs, the machine can predict the 
increase and the trend of Nit and ABDWT charge and also can 
track the change of gate voltages (i.e. degradation increases 
when the gate pulse is negative and recovers when the gate pulse 
is 0V). However, it cannot predict the amplitude of the 
fluctuation of these quantities. The amplitudes indeed stay 
almost constant after 30µs. Moreover, after 40µs (not shown), it 
can no longer predict the increasing trend of the degradation. 

VI. 3D SIMULATION DATA PREDICTION 

The same approach is applied to 3D TCAD data. Since 3D 
simulation is much slower than 2D, this methodology is 
expected to save a more substantial amount of simulation time. 
A 3D FinFET is constructed with a Fin width of 8nm, a Fin 
height of 42nm, and a gate length of 20nm (Fig. 7). It has 1.7nm 
HfO2 and 0.82nm interfacial oxide as the gate insulator. To 
reduce the simulation time, only half of the structure is 
simulated. Moreover, a long metal is added to mimic the long 
diffusion path of chemical species such as H2 across the die. The 
structure has ~140,000 mesh points. The same set of equations 
and models are solved as in the 2D cases. 4 CPU cores are used 
in the simulation. It takes about 20 days to complete the 
simulation of 10µs of 100MHz random gate voltages. The first 

5µs is used for training with 2000 LSTM units and the trained 

machine is then used to predict the degradation of the last 5µs. 
VG is between 0V and -1.4V and the ambient temperature is 
398K. The machine is trained for 2000 epochs. 

Fig. 8 shows the prediction results. The trained LSTM 
machine can predict the degradation well with R2 scores of 0.96 
and 0.92 for Nit and ABDWT charge, respectively. Note that the 
degradation is more severe in FinFET than in the 2D structure. 

 
 
Figure 5: Seaborn joint plots of TCAD and LSTM NBTI 
prediction for clock frequency of 1GHz using the model trained 

by 100MHz. Left: Nit. Right: ABDWT charge. 

 
 

Figure 6: Comparison between LSTM (trained by T1=10µs data) prediction and TCAD simulation for Nit (top) and ABDWT charge (bottom) 

for 100MHz testing data. For clarity, only the prediction between 10µs and 30µs is shown. Orange: LSTM. Blue: TCAD. 



Moreover, even though it also has a less steep slope in the region 
of study, the LSTM framework still works well. 

VII. CONCLUSIONS 

In this paper, the LSTM model is applied to predict the NBTI 
degradation of transistors. The model is trained by TCAD data 
generated with a sequence of random gate pulses. With proper 
training, the model is able to predict the degradation under new 
random gate pulses up to two times longer time. It also can 
predict the degradation due to gate pulses with other frequencies 
(10 times higher and 10 times lower). It can capture not just the 
R-D model but also the TTOM and ABDWT models well. It is 
also shown that this can be used to predict 3D TCAD 
degradation data and 10 days of simulation time can be saved in 
the case demonstrated. With proper simplification, this model 
may be used as a compact model for circuit simulations. 
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Figure 7: 3D FinFET used for NBTI simulation. Half structure 
is used to reduce the simulation time. A long metal gate (blue) is 
used to allow chemical species, such as H2, to diffuse in a large 
enough domain to establish realistic boundary conditions. 

 
 
Figure 8: Comparison between LSTM prediction and TCAD simulation for Nit (top) and ABDWT charge (bottom) for 100MHz testing data 

between 5µs and 10µs generated by unseen random gate voltage pulses for 3D FinFET. The LSTM was trained by the first 5µs data (not 
shown). Orange: LSTM. Blue: TCAD. 
 


