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Abstract—We propose a neural network (NN) model to im-
plement the electron–phonon scattering in quantum mechanical
transport simulations based on the nonequilibrium Green’s
function (NEGF) method. As a representative example of
nanoscale device, we consider the nanowire field effect transistors
(NWFETs), although the proposed scheme can be applied any
device structures. In particular, given the spectrum of lesser and
greater Green’s functions at the source and the drain edges of
the channel in the absence of the electron-phonon scattering,
we constructed the NN to predict the lesser and greater Green’s
functions in the presence of scattering, which are used to calculate
the terminal current of the device. The proposed scheme has been
successfully implemented to predict the trend of current against
the scattering strength with meaningful accuracy.

I. INTRODUCTION

Aggressive scale down of MOSFET has been one of the key
challenges in the technological evolution of the semiconductor
industry to achieve simultaneously the lower power consump-
tion, higher integration density, and higher operation speed
[1], [2]. For instance, multigate (three dimensional) structures
such as FinFETs, nanosheet FETs, and nanowire FETs are
effective to reduce power consumption since their efficient
gate electrostatic control of channel carriers over the thin
semiconductor layer allows us to use lower supply voltage
[3], [4].

The investigation and efficient design of of such lower-
power consumption devices have been significantly advanced
using modeling and simulation studies so far. Among the
various methods to simulate semiconductor devices, one of the
most reliable schemes, especially for nanoscale devices, is the
fully-quantum-mechanical simulation using non-equilibrium
Green’s functions (NEGF) [5]. However, NEGF simulation
requires repeated matrix operations and energy integrations to
calculate the carrier density, which must be self-consistently
calculated with Poisson‘s equation. This procedure is compu-
tationally expensive, which hinders the research and develop-
ment efforts.

Therefore it is important to reduce the computational time
required for NEGF device simulations; for instance, by ap-
plying information-scientific approach [6], [7], [8], [9], [10],
[11], [12], [13]. In Ref. [13], we have proposed a neural net-
work (NN) based scheme to accelerate NEGF-based quantum-
mechanical ballistic transport simulations for double gate

MOSFET as a representative example, where we implemented
the convolutional neural network (CNN) model to train and
predict the carrier density and local quantum capacitance
distributions as output data for given potential distribution as
input data. While this approach is useful in ballistic transport
simulations, more realistic simulations require to take into
account the effect of various scattering mechanisms such
as electron–phonon scattering, impurity scattering, boundart
roughness scattering, and so on. However, consideration of
scattering mechanisms in NEGF formalism is time consuming
due to the requirement of additional calculations of scatter-
ing self-energy functions, which have to be calculated self-
consistently with the Green’s functions [14].

With this motivation, we present a feasibility study to reduce
the computational cost required for the implementation of
scattering in NEGF transport simulations by means of NN
model approach. In particular we consider nanowire FETs
(NWFETs) as a representative example, and we consider
the electron–phonon scattering as a representative scattering
mechanism. However, our proposed scheme can be valid
for other device geometries and can be extended for other
scattering mechanisms as far as we use NEGF method.

Fig. 1. Cross-sectional illustration of cylindrical gate-all-around (GAA)
NWFET structure studied in this work. See text for details.

II. MODEL AND METHOD

Figure 1 shows the cross-sectional illustration of cylindrical
gate-all-around (GAA) silicon NWFET structure studied in
this work, where the source and drain electrodes are doped
into n-type with the doping concentration 1026 m−3, and the
gate insulator with the thickness tox = 1 nm and the dielectric
constant κ = 16, channel length Lch = 10 nm, and the
nanowire radius RNW = 3 nm. We employ the single mode
approximation and the effective mass m∗ = 0.19m0 is used
along the transport direction.
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In NEGF device simulations central quantities are the lesser
(occupied) and greater (unoccupied) Green’s functions given
by

G<(>) (E) = GR (E)Σ<(>) (E)GA (E) , (1)

where the lesser and the greater self-energies Σ<(>) (E)
are composed of the contact self-energy and the scattering
self-energy. For instance, the self-energy Σ< (E) due to the
electron–phonon scattering is given within the self-consistent
Born approximation as [14]

Σ<
phonon (E) = KacG

< (E)

+Kop

[
(Nop + 1)G< (E + ℏωop)
+NopG

< (E − ℏωop)

]
. (2)

Here the coupling constant Kac and Kop (with the dimension
of [energy2]) can be calculated by using the deformation
potential Dac [energy] of acoustic phonon and the deformation
field Dop [energy/length] of optical phonon, respectively. Here
G<(>) is determined through Σ<(>) (E) in Eq. (1), and the
latter is again determined through the former in Eq. (2).
Therefore G<(>) is self-consistently calculated starting from
those without scattering (hereafter we denote the latter as
G

<(>)
0 ), which can be calculated within less computational

time in general. Once the self-consistent calculations of NEGF
functions are converged, the terminal current at the left (right)
contact is calculated by

IL(R) =
2e

h
i

∫
dE ΓL(R)(E)

[
f(E − EFL(R))G

>
L(R)(E)

+
(
1− f(E − EFL(R))

)
G<

L(R)(E)
]
, (3)

where G<,>
L(R)(E) are Green’s functions at the left (right) edge

of the channel, and f(E − EFL(R)) is the Fermi distribution
function in the source (drain) electrode. This formula can be
reduced to Landauer-Büttiker formula in the absence of the
scattering.

Since the calculation of G<(>) can be regarded as the
mapping from G

<(>)
0 (without scattering) to G<(>) (with

scattering), one can expect that useful NN can be constructed
to generate G<,>

L(R)(E) spectrum in the presence of scattering

(output data) starting from G
<(>)
0 spectrum (without scatter-

ing) as input data. With this observation in mind, we employ
the convolutional neural network scheme, in particular, the
convolutional autoencoder (encoding-decoding) scheme shown
in Fig. 2, where we have four input channels (ImG<

L0(E),
ImG<

R0(E), −ImG>
L0(E), and −ImG>

R0(E)) with Nene =
100 energy grid points corresponding to the input image.
Scattering related parameters (Kac, Kop, and ℏωop) are also
treated as input data. We note that the scattering related
parameters are injected to the encoded data of the CNN
process. This is reasonable since G<,>

0 (E) are independent
of scattering related parameters. Below we consider only the
acoustic phonon scattering to demonstrate the usefulness of
the proposed scheme, although the implementation of optical
phonon scattering is straightforward. We consider 25 values

Fig. 2. Schematic illustration of the convolutional neural network model
(convolutional autoencoder scheme) for the imprementation of the electron–
phonon scattering.

of VG from 0 to 0.4 V and 5 values of
√
Kac from 0.05

to 0.2 eV as training data. VD is fixed at 0.3 V. Then the
CNN model shown in Fig. 2 has been trained to reproduce
the NEGF results. In the actual training process we have used
the log10 values of G<,>

0 (E) and G<,>(E) as input and output
(training) data, respectively. We note that in the present study
we treat the scattering related parameters as variable input
parameters to discuss the prediction ability of NN model for
various electron-phonpn scattering strength.

For the actual implementation we used the Keras API with
the TensorFlow backend engine [15]. To fully benefit from the
performance of CNN model, we use the frugally-deep
library [16], which allows us to use the trained Keras models
directly in our device simulator (written in C++) without
requiring Python interface.

Fig. 3. Correlations between the NEGF training data (horizontal axis) and the
NN predictions (vertical axis) for ImG<

L (E) (left) and −ImG>
L (E) (right),

where the data is normalized between 0 and 1.

III. RESULTS

In Fig. 3 we show the correlations between the NEGF
training data (horizontal axis) and the NN predictions (vertical
axis) for ImG<

L (E) (left) and −ImG>
L (E) (right), where the

data is normalized between 0 and 1. As shown in this figure
we have obtained good agreements between the training data
and predictions.
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Fig. 4. Comparisons of ImG<
L (E) and −ImG>

L (E) between the scattering
and ballistic cases. One can see the systematic relationship between them.
Solid and dashed lines are the cases without and with scattering, respectively.
The parameters used are VD = 0.3 V, VG = 0.35 V. and Kac for scattering
case is 0.0025 eV2.
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Fig. 5. Comparisons of ImG<
L (E) and −ImG>

L (E) between the NEGF
results and the CNN predictions for the same parameters as in Fig. 4.

In Fig. 4 we show one of the specific comparisons of
ImG<

L (E) (occupation spectrum of occupied states) and
−ImG>

L (E) (occupation spectrum of unoccupied states) be-
tween the scattering and ballistic cases. The parameters used
are VD = 0.3 V, VG = 0.35 V. and Kac for scattering
case is 0.0025 eV2. Here one can see the systematic rela-
tionship between them, suggesting the effectiveness of the
NN model. Figure 5 shows the comparisons of ImG<

L (E)
and −ImG>

L (E) between the NEGF results and the CNN
predictions, showing the excellent agreement between them
as expected from Fig. 3.

Then one can make the NN predictions of the current
by using Eq. (3) along with G<,>

L (E) predicted by CNN
model straightforwardly. In Fig. 6 we plotted the drain current
ID as calculated by NEGF and NN model. Here we can
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Fig. 6. The drain current ID is plotted as a function of the acoustic
phonon scattering parameter Kac for three different gate voltages VG. Results
obtained by NEGF (solid lines) and NN model (dashed lines) are compared.
Inset shows the VG dependence of ID (obtained by NEGF and NN model)
for Kac = 0.0025 eV2.
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Fig. 7. Representative results of the alternative CNN scheme based on Eq. (4)
(see text for detail). VG dependence of ID (obtained by NEGF and NN model)
is shown for Kac = 0.0025 and 0.2 eV2. We note that the case Kac =
0.0025 eV2 is included in the training data, while Kac = 0.02 eV2 is not.

see the meaningful agreement between them. However, the
discrepancy between them becomes large in the small VG

regime, and it is found that the subthreshold behavior is hardly
reproduced by the above proposed scheme. This is because the
magnitude of the current is determined through the 1st and
the 2nd terms in Eq. (3) in a combined way, and even the
extremely precise prediction of G<,>

L (E) themselves by NN
model is not enough to reproduce the subthreshold behavior
accurately.

In order to overcome this difficulty, we make use of the fact



that Eq. (3) can be rewritten as

IL =
2e

h
i

∫
dE ΓL(E)f(E − EFL) (1− f(E − EFL))

× i
(
ImG̃<

L (E) + ImG̃>
L (E)

)
, (4)

where G̃<
L (E) ≡ G<

L (E)/f(E − EFL) and G̃>
L (E) ≡

G>
L (E)/ (1− f(E − EFL)), and their imaginary parts have

the physical meaning as the effective density of states. Then
we construct the similar CNN model to reproduce the function
F (E) ≡ ImG̃<

L (E) + ImG̃>
L (E) starting from the same input

data as in Fig. 2, but this time we have only one output data
(i.e., the function F (E)). We have trained this CNN model
for F (E) using the same training data as before, and in Fig. 7
we show the comparison of the drain current obtained by
NEGF and by the improved CNN model. As seen in Fig. 7
now we can reproduce the current with meaningful accuracy
not only for the on-current regime but also in the subthresh-
old regime. This excellent improvement is possible because
the magnitude of the current (especially in the subthreshold
regime) is determined via the f(E−EFL) (1− f(E − EFL))
factor in Eq. (4) and remaining precise behavior is described
by the function F (E) defined above, where the magnitude
of the latter does not vary significantly at least within the
energy range required for the current calculation, suggesting
the efficient applicability of the NN model. We also note that
in Fig. 7 the case Kac = 0.0025 eV2 is included in the training
data, while Kac = 0.02 eV2 is not. Nevertheless the current
in the case Kac = 0.02 eV2 has been successfully predicted,
meaning the practical generalizability of the proposed model.

IV. CONCLUSION

We proposed a NN model to implement the electron–
phonon scattering in quantum mechanical transport simula-
tions based on the nonequilibrium Green’s function (NEGF)
method. In particular, given the spectrum of lesser and greater
Green’s functions at the source and the drain edges of the
channel in the absence of the electron-phonon scattering,
we constructed the NN to predict the lesser and greater
Green’s functions in the presence of scattering, which are
used to calculate the terminal current of the device. We first
proposed the model to predict G<

L (E) and G>
L (E) indepen-

dently through the CNN process. This model is conceptually
simple, and and can predict G<

L (E) and G>
L (E) with enough

accurately, although it is not appropriate for the prediction of
the subthreshold current behavior due to the structural feature
of Eq. (3). We note that this model has another merit that
it can be easily generalized to predict full G<,> (not only
the edge components). We also proposed an alternative CNN
scheme based on the different (but equivalent) expression of
the current Eq. (4). This latter scheme can overcome the above
mentioned difficulty in the first model, and can predict even
the subthreshold current behavior with meaningfu accuracy.
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