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Abstract—We propose to use a 3D convolutional neural
network to accelerate three-dimensional device simulation by
generating an electrostatic potential profile. In the training phase,
the deep neural network is trained with the simulation results
for various 3D MOSFETs in a supervised manner. The generated
potential profile is used as an initial guess at a non-equilibrium
condition, while carrier densities are estimated by the frozen
field simulation. By numerical examples for three-dimensional
MOSFETs, we show that the proposed method significantly
reduces the number of the Newton iterations.

I. INTRODUCTION

Artificial neural networks have attracted much research
attention, mainly due to their superior performance in various
application fields. In semiconductor industry, applications of
the neural network are rapidly expanding. For example, the
time-consuming chip floor planning can be automated by
adopting a deep reinforcement learning approach [1]. It allows
chip design to be performed by artificial agents. Another
example can be found in the compact modeling [2]. The
neural network model can reproduce the current-voltage and
charge-voltage characteristics of advanced FETs with excellent
accuracy.

When the semiconductor device technology is concerned,
various attempts, where the neural networks are applied to the
TCAD (Technology Computer-Aided Design) device simula-
tion, have been reported [3], [4], [5], [6], [7], [8], [9]. In these
attempts, the neural network is used to describe the compli-
cated input-output relation efficiently without considering the
internal physical quantities. Simulation results are collected
from several (typically hundreds or thousands) runs and the
neural network is trained to generate the output characteristics
directly from the input conditions.

Obviously, in these attempts, the computational cost is quite
low, since no actual device simulation is performed once after
the training phase is finished. However, the accuracy of the
predicted result cannot be guaranteed in advance, because the
underlying physical equations (e.g., the drift-diffusion model
in the device simulation) are not solved. Moreover, when a

new physical model is introduced (e.g., the mobility model
parameters are changed), the training data is also changed and
we may need to train the neural network again.

On the other hand, there are other attempts where the
internal physical quantities are considered. In our previous
works, the deep neural networks were trained to generate ap-
proximate potential profiles for various devices such as diodes
[10], BJTs [11], and two-dimensional MOSFETs [12]. We use
the generated approximate potential profile as a good initial
solution for the self-consistent device simulation. Therefore,
the computational time can be reduced significantly, compared
with the conventional solution method. When the converged
solution is obtained, the accuracy of the final solution is
identical with that of the conventional solution method. It is
expected that the predicted electrostatic potential may be re-
used even with a new physical model. It is noted that a similar
approach has been independently applied to the NEGF (Non-
Equilibrium Green’s Function) calculation in [13].

Although the second approach seems to be promising, it
has been applied only to the one- [10] or two-dimensional
[11], [12] device structures. Since the practical device struc-
tures such as FinFETs and nanosheet MOSFETs are three-
dimensional, extension to the three-dimensional structure is in
need. Here, we demonstrate that our method can be applied to
three-dimensional MOSFETs with appropriate modifications.

Organization of this extended abstract is as follows. In Sec-
tion II, the proposed neural network is described. Numerical
examples for three-dimensional planar MOSFETs are shown
in Section III. The conclusion is made in Section IV.

II. NEURAL NETWORKS

Since the electron and hole continuity equations become
linear or at most locally nonlinear under a fixed electrostatic
potential profile, carrier densities can be easily evaluated
once the electrostatic potential is given. Compared with the
full set of unknown variables (the electrostatic potential and
two carrier densities), it is much more efficient to specify
only the electrostatic potential. Therefore, the proposed deep978-1-6654-0685-7/21/$31.00 c©2021 IEEE



Fig. 1. Conceptual diagram for the proposed method. We consider three-
dimensional structures in this work.

Fig. 2. Layer structure of the CNN structure adopted in the three-dimensional
problem. The output layer generates a 64-by-64-by-64 tensor corresponding
to the three-dimensional simulation domain.

neural network is trained to generate the electrostatic potential
profiles.

Figure 1 shows a conceptual diagram for the proposed
neural network, specifically the inference phase is presented.
The device characteristics are provided to the trained neural
network as the input parameters. Then, the electrostatic poten-
tial profile is generated as an output image.

For a two-dimensional device structure, a two-dimensional
image was sufficient. However, for a three-dimensional device
structure which we consider here, output needs to be three-
dimensional (or a set of two-dimensional images, in other
words). To address this, we employ a 3D convolution layer
to a generative neural network [14]. Figure 2 overviews the
neural network structure we use. The output layer generates a
64-by-64-by-64 tensor.

Our deep neural network can generate potential profiles
suitable for a tensor grid. On the other hand, a general device
simulator adopts unstructured meshes. Since the meshes are
different, the generated potential profile cannot be directly
imported into the device simulator. In order to address such
difficulty, we perform the interpolation between a tensor grid

Fig. 3. Device template of structures under consideration for three-
dimensional planar MOSFETs. Numbers represent lengths in microns.

of the deep neural network and an unstructured mesh of
the device simulator, as discussed in [12]. The sampling and
interpolation capability is implemented in our in-house device
simulation framework (G-Device) [15], [16]. We implement
the neural network using PyTorch [17].

III. THREE-DIMENSIONAL MOSFETS

The device template of three-dimensional planar MOSFETs
is shown in Fig. 3. Several control parameters used in the
device template are also shown. The gate length (Lg), gate
width (Wg), oxide thickness (tox), trench length (Ltrc), trench
depth (Dtrc), trench width (Wtrc), and junction depth(Xj) are
used as the length control parameters. The source/drain arsenic
doping (Nsd) and substrate boron doping (Nsub) are used as
the doping control parameters. The gate bias (VGS) and drain
bias (VDS) are used as the bias control parameters. In total, 11
control parameters are introduced in this work. These control
parameters are used as the input parameters of the deep neural
networks, as shown in Fig. 1.

Table I shows ranges of control parameters in the training
dataset. The training data set contains 1,000 instances of
sampled potential profiles.

The distributions of input parameters are shown in Fig 4. As
shown in the figure, the input parameters are randomly selected
in order to consider the entire parameter range uniformly.

In training phase, the training and validation losses are mea-
sured as functions of the learning epoch in Fig. 5. Throughout
the training phase, it is observed that the error is reduced for
both the training dataset and the validation dataset. After 100
epochs, the losses are reduced considerably.

After the training phase, the trained convolutional network
can generate an approximate potential profile in the inference
phase. Figure 6a shows an example of the electrostatic po-
tential profile generated by the trained convolutional neural
network when input parameters are Lg = 0.20 µm, Wg = 0.28
µm, tox = 1.6 nm, Ltrc = 0.32 µm, Dtrc = 0.17 µm, Wtrc =
0.091 µm, Xj = 0.13 µm, Nsd = 1.39×1019 cm−3, Nsub =



TABLE I
RANGES OF DEVICE CONTROL PARAMETERS

Parameter Minimum Maximum

Lg 0.11µm 0.28µm

Wg 0.1µm 0.3µm

tox 1.2nm 3.0nm

Ltrc 0.2µm 0.38µm

Dtrc 0.1µm 0.3µm

Wtrc 0.05µm 0.15µm

Xj 0.05µm 0.15µm

Nsd 1.0× 1019cm−3 1.0× 1019cm−3

Nsub 5.0× 1016cm−3 6.0× 1017cm−3

VGS 0.0V 1.1V

VDS 0.0V 1.1V

Fig. 4. Distributions of input parameters in the training dataset.

Fig. 5. Training and validation losses of a convolutional neural network,
which is trained for the three-dimensional planar MOSFETs.

8.80×1016 cm−3, VGS = 1.1 V, and VDS = 1.1 V. Since the
structure is three-dimensional, visualizing the entire potential
profile is not very convenient. Instead, quantities on a two-

(a) (b)

Fig. 6. (a) Numerical solution (Left) and a generated potential profile by
the 3D convolutional neural network (Right) and (b) its error when VGS =
1.1 V and VDS = 1.1 V. Device control parameters can be found in the
main text. Quantities on a two-dimensional cross-section are drawn. The two-
dimensional cross-section is located at the center position along the width
direction.

(a) (b)

Fig. 7. (a) Numerical solution (Left) and a generated potential profile by the
3D convolutional neural network (Right) and (b) its error when VGS = 1.1 V
and VDS = 1.1 V. Device control parameters can be found in the main text.
The MOSFET has a longer channel length than the one in Fig. 6.

dimensional cross-section are drawn. Its error, the difference
between the generated potential profile and the numerical
solution, is shown in Fig. 6b.

Fig. 7a shows another example with a longer gate. Its input
parameters are Lg = 0.11 µm, Wg = 0.1 µm, tox = 1.2 nm,
Ltrc = 0.2 µm, Dtrc = 0.1 µm, Wtrc = 0.05 µm, Xj = 0.05
µm, Nsd = 1.39×1019 cm−3, Nsub = 8.80×1016 cm−3, VGS

= 1.1 V, and VDS = 1.1 V. Its error is shown in Fig. 7b.
As shown in Figs. 6b and 7b, the generated potential profiles

are not perfectly matched with the numerical solutions. The
maximum absolute error in Figs. 6b and 7b is as large as 0.36
V, which is not negligible at all. Nevertheless, they can serve
as good initial solutions to accelerate the device simulation.
A test dataset, including 500 device simulation results which
are not included in the training dataset, is prepared. For all
test cases, the numerical solutions are obtained without any
convergence failure. The distribution of Newton iterations for
the test dataset is shown in Fig. 8. In many cases, only 7 or 8
Newton iterations are needed to obtain the converged solution.
It is noted that the typical number of Newton iterations with
the conventional solution method, where the bias ramping from
the equilibrium condition is adopted, is about 100. It means
that the proposed method can accelerate the device simulation



Fig. 8. Distribution of the Newton iterations when the generated potential
profiles are used as initial solutions for 500 test cases.

significantly.

IV. CONCLUSION

We have shown that our previous approach to accelerate the
device simulation can be extended to the three-dimensional
device structures without much difficulty. The sampling and
interpolation capability enables us to connect the tensor grid
and the unstructured grid. The 3D convolution layer is adopted
to generate the three-dimensional potential profiles. Signifi-
cant acceleration has been achieved for the three-dimensional
MOSFETs.

In this work, numerical results for the planar MOSFETs are
shown. Of course, the multi-gate MOSFETs such as FinFETs
or nanowire MOSFETs are of practical interest. Application
to those multi-gate MOSFETs will be reported elsewhere.
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