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Abstract—Spiking Neural Networks (SNNs) are brain-inspired 

computational networks that promise an efficient solution for real-

life applications such as audio processing and pattern recognition. 

An SNN is a complex network of neurons interconnected with 

synapses, whose spike times and synaptic strength is essential for 

information processing. SNNs consume low power and perform 

computations in parallel, making them attractive for hardware 

implementation of applications in neuromorphic engineering. For 

hardware implementation of SNNs, we need devices that mimic 

the behavior of neurons and synapses as well as their 

computational models to build and characterize large-scale SNNs. 

Earlier, a Pr0.7Ca0.3MnO3 (PCMO) material based Resistive-RAM 

(RRAM) has been used to experimentally demonstrate an 

Integrate and Fire (IF) Neuron and Izhikevich Neuron. Here, we 

present an experimentally validated Verilog-A model of PCMO 

RRAM, which behaves like a neuron. The model captures the 

conductance change of the RRAM for different applied voltages 

and can mimic an IF Neuron and an Izhikevich Neuron. The 

model enables the design of large-scale SNNs and studies their 

behavior in a simulation domain. 

Keywords—PCMO, RRAM, SNNs, Izhikevich Neuron, Integrate 

and Fire Neuron 

I. INTRODUCTION 

Brain-inspired computing with spiking neural networks 
(SNNs) are thrusting efficient solutions for real-life applications 
such as pattern recognition and audio processing [1]. SNNs 
consume less power and perform computations in parallel, 
making them an attractive alternative for traditional 
computational systems based on the von Neumann architecture 
[2]. SNNs are comprised of neurons that are interconnected via 
synapses. A biological neuron 'integrates' the input signal to 
raise its membrane potential. Once the membrane potential 
exceeds a threshold value, the neuron performs a 'fire' operation. 
The event is referred to as neuronal spiking. A biological 
synapse can adjust its conductance level, or synaptic strength, 
based on the time difference between the spiking of neurons 
situated at the two ends of the synapse. Owing to spike timings, 
the human brain can exhibit different spiking patterns, as shown 
in Fig. 1(a). These spiking patterns are correlated to different 

brain functions [3]. To efficiently mimic human brain in neural 
networks, it is essential to capture the different spiking patterns 
of biological neurons. For a hardware implementation of SNNs, 
we need devices that are capable of performing an integration 
and fire operation (to function as a neuron) and exhibit multiple 
controllable conductance levels (to function as a synapse). In 
recent years, RRAM is proving to be a promising candidate for 
such applications. 

For SNNs, one of the upcoming devices is the PCMO 
material-based RRAM. The PCMO based RRAM exhibits a 
gradual RESET operation (RESET: Decrease in conductance) 
and an abrupt SET operation (SET: Increase in conductance) 
with respect to the applied voltage. Recently, the PCMO based 
RRAM has been utilized to implement the spike time-dependent 
plasticity (STDP) rule of the synapse (Fig. 1b). STDP plays a 
vital role in the learning of neural networks [4-5]. Additionally, 
using the change in conductance states in PCMO RRAM, a 
clocked neuron has also been demonstrated, which is capable of 
exhibiting Integrate and Fire (IF) operation and complex 
Izhikevich dynamics [6-7]. Further, with PCMO RRAM-based 
neurons, if the set-up parameters are kept constant, including 
device area and input bias, we can modulate neuron spiking 
frequencies by changing only the initial conductance state of the 
device [7]. Since PCMO can be used for both a synapse and a 
neuron, an SNN can be fabricated out of the same material 
system, decreasing the complexity in hardware implementation 
(Fig.1b). Moreover, in conventional CMOS-based neurons, 
large capacitors are needed to perform the integration operation 
at a biological timescale; hence more area is required, as shown 
in Fig.1(c) [9]. In contrast, NVM-based neurons are able to 
generate large timescales using device physics and are still 
nanoscale as there is no requirement for external capacitors. For 
biological SNNs, RRAMs offer non-volatile memory and 
analog synapse capability with area efficiency. PCMO based 
RRAM devices are non-filamentary and area scalable. 
Therefore, with small area capacitor-less PCMO RRAM-based 
neurons, dense neural networks can be designed.   
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Fig. 1. (a) Biological Neuronal Dynamics. Different neurons are interconnected via synapses. Analog conductance of the synapse determines the strength of the 
connection. Various neuron patterns are emulated by Izhikevich Model. (b) RRAM device schematic and its DCIV characteristics. RRAM exhibit both synapse and 
neuron characteristics [4,8]. (c) CMOS-based neurons need large capacitors (area penalty) at a biological timescale. NVM-based neuron are nanoscale even for 

large  (τ � RC) [9]. For biological SNNs, RRAMs offer non-volatile memory and analog synapse capability with area efficiency.

However, prior to hardware implementation of SNNs, it is 
essential to analyze the SNNs in a simulation environment, 
which would require simple yet comprehensive computational 
models. Previously, extensive research has been done with 
RRAM device switching models [10-12]. In [13], a reaction drift 
model is introduced with PCMO RRAM devices. In this paper, 
we propose a modified physics-based device model written in 
Verilog-A. The proposed model captures the current transport, 
electrothermal dynamics, and trap density modulation (trap 
generation-recombination) of the PCMO based RRAM device. 
The model has been calibrated with the experimental neuronal 
dynamics of IF neuron, and Izhikevich dynamics. Such models 
enable the design of large neural networks and study ensemble 
dynamics. 

II. DEVICE DETAILS 

The PCMO RRAM has a metal-insulator-metal (MIM) 
structure, with Tungsten (W) as the top reactive electrode and 
Platinum (Pt) as the non-reactive bottom electrode, as shown in 
Fig.2(a). The device is fabricated on a Si/SiO2/Ti substrate.  The 
PCMO RRAM provides multiple analog conductance levels,

 

Fig. 2. (a) Device Schematics of PCMO based RRAM (b) Flowchart describing 
current computation in Verilog-A model. Current is a function of temperature 
and trap density. 

which are controlled by the trap density of the device. The trap 
density can be decreased by the SET process and increased by 
the RESET process. In the SET (RESET) process, a negative 
(positive) voltage pulse is applied to the top W electrode of the 
RRAM. A redox reaction occurs at the reactive top electrode-
PCMO interface, where oxygen ions are pushed into (out of) the 
PCMO material and trap density decreases (increases). 

III. DEVICE MODEL 

To model the behavior of the RRAM, it is important to 
implement the current transport, electrothermal dynamics, and 
trap generation-recombination dynamics. Each of these 
phenomena is described below. 

A. Current Model 

The current through PCMO RRAM follows Space Charge 
Limited Current (SCLC) mechanism [14-15]. The following are 
equations are used to model the current-voltage-trap density 
relationship, 
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B. Thermal Model 

The PCMO RRAM exhibits self-heating, which facilitates 
the resistive-switching within the device [16]. The device 
temperature is computed using the following Fourier heat 
equation, 
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TABLE I.  MODEL PARAMETER VALUES 

a.
 Depends on the trap density, as per [14] 

b.
 Depends on the conductance level 

C. Reaction Drift Model 

The trap density modulates the conductance of the device 
within the device [13]. On the application of a positive 
(negative) bias to the top electrode, trap generation 
(recombination) occurs at the reactive top electrode followed by 
transport (drift) of vacancies into the bulk under the influence of 
an electric field. With trap generation (recombination), trap 
density increases (decreases) within the device. This, in turn, 
leads to a lower (higher) current through the device, and hence 
a lower (higher) conductance level. The trap density modulation 
is modeled using the following equations referred from [13],  
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Here, NT is the trap density within the device, keq is reaction 
rate, vdrift is drift velocity, and L is device thickness. 

The above equations are modeled in Verilog-A and 
simulated using the Analog Design Environment (ADE) of 
Cadence Virtuoso. The model is initialized with an ambient 
temperature Tamb (300K), a constant input voltage, and an initial 
trap density which corresponds to the initial conductance level 
according to the experiments. Equations (1) to (5) are solved 
self-consistently. Fig. 2(b) demonstrates the flowchart of the 
model, and Table I shows the parameters used in the model. 

IV. MODEL DETAILS  

In the presented model, to capture all the experimental 
features for the set of parameters, a calibration factor is 
proposed, and (5) is multiplied by the factor. The factor adjusts 
the amount of conductance change. The reasoning and 
justification for the proposed methodology are presented below.  

 

 

Fig. 3. (a) Uniform trap density profile  (b) Non-uniform trap density within the 
bulk PCMO material. 

A. Assumption of the Reaction Drift Model 

The reaction drift model presented in [13] and (5) assumes 
that the trap density profile NT(x) and the electric field profile 
E(x) are uniform throughout the length of the device. Further, 
either the SET or RESET process modulates the trap density 
uniformly throughout the device (Fig. 3(a)). During the SET 
process, as the overall (or effective) trap density decreases, the 
trap density at the interface reduces, increasing the rate of 
change of trap density (5). During the RESET process, as the 
overall (or effective) trap density increases, the trap density at 
the reactive electrode interface increases as well. This reduces 
the rate of change of trap density, as per (5). 

B. Experimental Evidence for the Trap Density Profile 

Recently, a 3 Terminal PCMO based RRAM was proposed, 
which investigated the region of the resistance change of the 
RRAM [17]. After a resistive switching process, the region of 
the resistance change, or the region where the trap density has 
been modulated, lies near the non-reactive electrode, away from 
the reactive electrode. This implies that NT(x) and E(x) are non-
uniform. 

C. Simplified Uniform Trap Profile Approximation 

Fig. 3(b) shows a representation of the non-uniform trap 
density profile. As shown in [17], a cluster of traps would be 
present near the non-reactive Pt electrode, away from the 
reactive W electrode. 

When we apply a negative bias to the reactive W electrode, 
the cluster of traps will start to move towards the W electrode. 
Once the cluster of traps reaches the reactive electrode, the traps 
are consumed, lowering the overall (or effective) NT of the 
device. The NT at the reactive electrode interface may be higher 
than the effective NT as the transport of traps towards the 
interface (increasing trap density) will be in competition with 
the annihilation of traps owing to reaction (decreasing trap 
density). This may give rise to a different dNT/dt than observed 
in the reaction drift model. 

When we apply a positive bias to the reactive W electrode, 
the traps are generated at the reactive electrode interface, 
increasing the overall (or effective) NT of the device. These 
newly generated traps travel under the electric field towards the 
non-reactive Pt electrode and accumulate there, which leads to 

Model 
Parameter Information 

Symbol Quantity Value 

Current 
Model 

μ Mobility 17.5 cm2/V-s 

ϕB Barrier Height NAa 

ϵPMO Dielectric Constant 30 

Nv 
Effective Density of 

States 
8.16 x 1019 cm-3 

Etrap Trap Level 0.06 eV 

NT Trap Density NAb 

Device 
Specification 

L Length 60 nm 

A Area 1 x 1 um2 

Thermal 
Model 

Tamb Ambient Temperature 300 K 

Rth Thermal Resistance 19006 K / W 

Cth Thermal Capacitance 0.26 pJ / K 

Reaction 
Drift Model 

keq Reaction Rate ~ (0.1/(QR4))3 

n Traps per anion [13] 2 

f Calibration factor 1-10 

(b) (a) 



 

Fig. 4. Verilog-A simulation with consecutive pulses of equal amplitude and 
duration are applied to the device with different initial conductance. (Go). (a) 
Conductance vs Pulse No. to achieve a single spike (b) No. of pulses required 
to get a spike. 

a cluster of traps at the Pt electrode. Since the traps generated 
at the interface are removed simultaneously, the dNT/dt would 
be different than predicted in the reaction drift model. 

Considering the non-uniformity of the trap density and 
electric field profile, (5) is multiplied by a calibration factor 'f' 
to alter the rate of change of trap density, which contains the 
effect of non-uniform trap density. The factor f is constant with 
time, initialized at the start of the simulations for different (Vapp, 
NT,initial). In [14], it is shown that a non-uniform trap density 
profile does not lead to significant asymmetry in the IV 
characteristics of the device. Thus, an effective uniform trap 
density modeled with factor 'f' is a sufficient approximation.   
The presented model matches the experimental frequency vs. 
Vapp characteristics of the IF neuron. It also exhibits the 
experimentally demonstrated decreasing spike time with 
increasing conductance characteristics. 

V. SIMULATION RESULTS 

The model is initialized to NT as per the initial conductance 
level, T = 300K, and V = Vapp. Factor f is calibrated for each 
simulation, for which results are presented below: 

A. Effect of Initial Conductance on Spiking Frequency 

For different initial conductance values (or trap densities), a 
train of voltage pulses with (Vapp, Pulse Width) = (-2.4 V, 150 
ns) is applied to the device. Once the RRAM reaches a 
particular conductance level, a spike is issued. As shown in Fig. 
4(a), with the increase in initial conductance (Go) of the device, 
the number of pulses required to elicit a spike decreases. The 
model is calibrated to match the experimental data for different 
conductance levels, and the results are shown in Fig. 4(b). 

 
Fig. 5. Integrate and Fire (IF) Operation: Comparison of Experimental and 
Simulated results for SET voltages (a) V = -2.2, (b) V = -2.3, (c) V = -2.4 Pulse 
Width = 150 ns were applied. The Verilog-A simulations accurately captures 
the spiking behavior observed in the experiments. 

 

Fig. 6. Izhikevich Operation: Experimental & Simulated results of (a) Intrinsic 
Bursting and (b) Chattering Neuron. A SET pulse of -2.2 V for spike and a 
strong or weak RESET operation depending upon the desired behavior. 

B. Integrate and Fire Behavior (IF) 

Fig. 5 shows the calibrated simulation results to exhibit IF 
behavior for three different voltage trains of Vapp = -2.2V, -
2.3V, -2.4V, and a Pulse Width of 150 ns. With each successive 
pulse in the pulse train, the trap density of the device is 
integrated, raising the conductance level of the device, imitating 
the 'integrate' operation. Once the conductance level exceeds a 
threshold value, the conductance change is abrupt, mimicking 
a fire operation. Here, a RESET pulse is applied to reduce the 
conductance to a low level, imitating the 'fire' operation. The 
voltage pulse train is applied again to elicit a spike. Higher 
applied voltage integrates more trap density; hence the 
conductance change with each successive pulse is higher, and 
the spike time is low. For lower voltages, the amount of trap 
density integrated is comparatively less, which leads to a 
smaller spiking time. 

C. Izhikevich Dynamics 

Fig. 6 shows the calibrated simulation results to exhibit 
Izhikevich dynamics of Chattering Behavior (CH) and Intrinsic 
Bursting Behavior (IB). To exhibit a burst of spikes, a small 
RESET voltage (Weak RESET) is applied to reduce the 
conductance level to a moderate value, rather than a small 
conductance value (via a Strong RESET), and a SET pulse is 
applied immediately. This process is repeated until the desired 
number of spikes are reached, then a Strong RESET is 
performed. 

VI. CONCLUSION 

To summarize, we demonstrated IF neuron behavior and 
different neuronal spiking pattern with the proposed 
computational Verilog-A model of PCMO RRAM-based 
device. The calibrated simulation results show that the model 
successfully captures the device dynamics and hence will 
enable an efficient circuit simulator environment to develop 
SNNs.  With SNNs build on comprehensive models, solutions 
to different intricate problems can be predicted with higher 
accuracy. 
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