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Abstract—The modern fabrication technology node for 

devices and circuits is causing several failure analysis challenges 

of the current state-of-the-art tools to actually find the location 

of the physical defects. Here, we show an approach of combining 

SPICE circuit simulations and machine learning for bridging-

detect predictions in a 6T-SRAM cell. Our predictive model 

consists of Random Forest, XGBoost, and LightGBM 

algorithms which are trained with several electrical attributes 

of the circuit having faults. We compare the performance of the 

algorithms and calculate the accuracy in predicting the defect 

location. We believe that this approach promises to improve the 

failure analysis, enhancing the cycle of design to product. 

Keywords—Failure analysis, 6T-SRAM, Random Forest, 

XGBoost, LightGBM 

I. INTRODUCTION  

A continuous reduction of the technology node is the 
primary reason behind the amazing increase of the 
computational power of modern integrated circuits (ICs). The 
increasing packing density is allowing more logic circuits to 
be fabricated on a given area of the IC chip. The transistor 
structure in the circuits has drastically changed from a planar 
architecture to a 3D fin field-effect transistors (FinFETs) [1] 
and then gate-all-around (GAA) nanosheets [2]. New 
materials and technology apart from conventional silicon have 
also been introduced [3, 4]. To support all these, the process 
technology is becoming more and more complex.  

   

Fig.1: Simulated gate-drain short between contact and high-k metal gate 
in a nMOS FinFET by Sentaurus SPX is shown. 

Failure Analysis (FA) is a major way to drive yield 
enhancement, reliability, and accelerate product development 
cycle in the semiconductor industry. The continuous 
miniaturization of the semiconductor devices has led to the 
dimension reduction of circuits (e.g. a 6T-SRAM cell) yet 
achieving improved performances. Because SRAM-based 
systems are designed with a tight design rules, one expects 

them to provide an appropriate vehicle to diagnose failures [5, 
6]. With modern technology nodes, the defect location 
identification without any prior knowledge of any electrical 
characteristics data is almost an impossible task. Among other 
defects, a resistive short (or bridging-defect) is often 
considered as a common type of yield killer particularly for 
front-end of line (FEOL) yield. A slight variation during the 
processing can result in shorts of local interconnect as well as 
any of a transistor in a 6T-SRAM bit cell [7, 8].  

         
 

  

Fig.2: A 6T-SRAM bit cell with bridge-defects as resistors in between 
different possible node-pairs is shown. In this work, one defect at a time is 
assumed to be present. Industry-standard BSIM-CMG compact model is used 
for simulations. The resistors R1 to R15 are varied from a lower to higher value 
to create sufficient data for algorithm training. BL and BLB- two bit lines, 
WL- word line. 

The defect identification workflows are dependent on the 
electrical nano-probing method. This nano-probing is a SEM 
(scanning electron microscopy)-based probing technique 
collecting the DC characteristics for analysis of the transistor-
level behavior. The time and the cost required to perform such 
physical FA using industry-standard FA tools is generally 
high, and the electrical interactions between the defect, 
transistors, and interconnects are becoming difficult to 
partition. Moreover, as the occurrence chance of real defects 
is quite low in microchips, a defect modeling and circuit 
simulation methodology should be adopted. 

II. SIMULATIONS  

Fig. 1 shows an example of a nMOS device in the presence 
of such a resistive short defect, generated by simulations 
through Synopsys Sentaurus Process Explorer (SPX). SPX is 
a new physical layout-based TCAD structural modeler, used 
for visualization and understanding of the defect origination 
[9]. SPX provides a graphical user interface (GUI) to create 
layouts and device process flow. It provides a Design of 



Experiment (DOE) interface for simulating multiple structures 
with varying process parameters for comparison. The TCAD 
tool SPX, as compared to another popular TCAD tool 
Sentaurus Process (SProcess), is a more efficient choice to 
simulate complex 3D structures such as a FinFET device for 
its own reasons. The created device structure can be further 
used for device (as well as mixed-mode) simulations using the 
Sentaurus Device (SDevice) tool. The major characteristics of 
the SPX tool over SProcess is the complex mesh system 
demanding special treatment explained in [10]. Indeed, one 
can use TCAD-based simulations to understand the impact of 
such defects on a 6T-SRAM circuit. However, this approach 
will involve a complex mesh system of the SPX as well as 
much higher simulation time with SDevice. 

In this work, with SPICE-level simulations [11] we 
scrutinize, if one can use advanced data analytics or machine 
learning (ML) technique for failure mode identification. In 
fact, different ML techniques in the last few years have 
already been utilized in the research domain to understand 
several semiconductor device-level failures, both in the 
presence and absence of complete domain knowledge [12-16]. 

Fig. 2 shows a SRAM circuit having a bridge-defect 
present across any one of the fifteen possible node pairs. Each 
such resistor may refer to either interconnect-level or device-
level short, e.g. the bridge-resistor R1 (R2) represents source-
drain short to P1 (P2) transistor. Our first step is to understand 
how the presence of such a resistance impacts the output 
characteristics of the circuit. We have to identify the circuit 
features which are easily measurable and influenced by the 
defect locations. For ML training purpose, we have to develop 
a dataset comprising of such features. Then, during the testing 
time, the algorithm should predict the defect location based on 
the electrical attributes provided. The simulation methodology 
is described in the following section. 

  

Fig.3: The SRAM butterfly curves during the retention mode of operation 
(i.e. the circuit biased at VWL=VBL=VBLB=Vss=0, Vdd=VDD=1V) having the 
defect resistance R present at two different locations (i.e. R1 referring to left 
and R2 referring to right figure) is shown, c.f. Fig. 2. The curve for the control 
circuit (i.e. no defect) is also shown for a comparison. Clearly, the presence 
of the defects at different locations result in different values of static noise 
margin and the point where VL=VR. 

A. Spice Simulations 

Industry-standard BSIM-CMG multi-gate compact model 
with default parameters is chosen for SRAM circuit 
simulations. We extract the features of the circuit from both of 
its DC and transient analyses in the presence of a resistor 
across each of the node pairs. We vary the resistance values 
through simulations to create enough data. Of course, the 
value of the resistance will be proportional to the size of the 
defect. The static noise margin (SNM), an important 
parameter pertaining to the stability of the bit cell, is obtained 
by adjusting the largest possible square in between the two 
voltage transfer curves (VTC, forming a butterfly-like curve) 
of two CMOS inverters. In our case, the DC features are 
extracted from the so-called ‘butterfly curve’ during the 
conventional retention (c.f. Fig. 3, the voltage bias is given by 

VWL=VBL=VBLB=Vss=0, Vdd=1V) and read (voltage bias is 
VWL=VBL=VBLB=Vdd=1V, Vss=0V) modes of operations. For 
example, the trip point voltage, defined as the point where the 
line VR=VL meets the VTC curve of the respective inverter is 
considered as a feature. From the symmetry of the circuit we 
understand that one has to vary VR in order to locate any defect 
present in between any of Vdd/BL/BLB/WL/Vss points and VL. 
Similarly, we should vary VL to find defects present in 
between any of the Vdd/BL/BLB/WL/Vss points and VR. 
Again, the coordinates of the points where slope of the VTC 
curves become -1 are chosen as features. 

In Fig. 3(left) when VR is drawn to a high value, ideally P1 
would be open circuited and N1 would be conductive. The 
presence of the resistance R1 acts as the source-drain short of 
P1, thus a current would flow along Vdd->R1-> N1 direction, 
causing a voltage drop across N1. This explains the 
corresponding VTC curve. In similar, as noticed in Fig. 
3(right) when VL is drawn to a high value, P2 should ideally 
be open and N2 conductive. The presence of the resistance R2 
would act as the source-drain short of P2, thus a current would 
flow along Vdd->R2->N2, causing a voltage drop across N2. 
This explains the corresponding VTC curve. It is also noted 
that when the resistance value increases, both the ‘butterfly’ 
curves tend towards the one without any defect. This is 
obvious as in such a case, the shorting resistance is becoming 
open circuited. 

During the transient analysis we write a logic such that the 
state of VR (VL) switches to ‘low’ (‘high’) from initial ‘high’ 
(‘low’) value. This means, we pre-charge one of the bit lines 
to high and the other to low, then turn on the access transistors 
using the word line pulse to change their states. By this way, 
we consider the rise time (change from 10% to 90%) of VL, 
fall time (change from 90% to 10%) of VR, and the point 
coordinate where those two signals meet (i.e. VL(t)=VR(t)) as 
features. By all these means, we have successfully extracted 
more than twenty features from DC and transient simulations. 

Testing (%) 20 30 40 50 60 70 

RF  96.67 97.04 97.22 96.89 97.41 89.52 

XGBoost  94.44 97.04 96.67 96.44 95.55 90.47 

LightGBM  94.44 95.55 96.11 96.88 97.04 93.65 

Table I: The table shows the prediction accuracy (%) of the chosen 
algorithms, where training data is gradually decreased. Here, we have used 
preprocessing technique like ‘StandardScaler’ from ‘sklearn’ [21]. 

 

B. Machine Learning Implementation 

Generally, the supervised ML refers to using a set of input 
features to predict the value of a labeled output variable (i.e. 
defect location in our case). Once the database is developed, 
three supervised learning algorithms e.g. Random Forest (RF) 
[17], Extreme Gradient Boosting (XGBoost) [18], and 
LightGBM [19] are chosen for training and predicting the 
defect location based on the input attributes. The main 
advantage of these algorithms is their ability to extract 
important features from the trained predictive model. 
Generally, the execution time of XGBoost is lower than that 
of LightGBM. We mention here that for certain values of the 
resistance in our chosen range, our dataset would contain 
some missing values. In order to circumvent this issue, when 
necessary, we have used the imputation technique for filling 
the missing values using k-Nearest Neighbors 
(‘KNNImputer’) algorithm from ‘sklearn’ [20]. 



 

 

Fig.4: The RF confusion matrix is shown. The indices R1-R15 signify the 
resistances connected at fifteen different locations (cf. Fig. 2). Testing data 
used=40%. 

 

Fig.5: The XGBoost confusion matrix is shown. 

 

Fig.6: The LightGBM confusion matrix is shown. 

 

III. MACHINE LEARNING RESULTS 

Based on the chosen algorithm models, a good overall 
classification accuracy on the testing data (even with low 
training data) is achieved as shown in the Table I. Of course, 
the accuracies of the algorithms depend on the training data 
percentage. The accuracy of the LightGBM algorithm remains 
reasonably high, even when only 30% data has been used for 
training. Fig. 4-6 show the confusion matrices calculated by 
the chosen algorithms, respectively. All samples, except for 
those from R10, R11 are classified correctly as shown in Fig. 4. 
Fig. 5 shows how all but R8, R10, R11 are classified correctly. 

Similarly, as shown in Fig. 6, only R8, R10, R11 are wrongly 
classified. Interestingly, out of these three cases, R10 region 
(i.e. a resistance connected between VR and VWL) and R11 
region (a resistance connected between VR and VBL) have 
fallen common.  

The extracted features of importance are shown in Table 
II-IV, respectively. We find that, if one uses the XGBoost 
algorithm for our particular dataset, one would be able to 
maintain a good accuracy (cf. Table III) with the features 
obtained by DC analysis only. Intuitively, if one includes more 
extracted features performing conventional DC write mode of 
operations i.e. bias with VBL (or VBLB)=VWL=Vdd=1V, and 
VBLB (or VBL)=Vss=0V, the testing accuracy would be further 
improved. 

Features  Importance 

Rise time of VL during transient analysis 0.105673 

VR=VL during transient analysis 0.081829 

Time when VR=VL during transient analysis     0.073452 

Vary VR during the read mode of operation, extract trip 
point (i.e. VL=VR) voltage     

0.066535 

Vary VL during the read mode of operation, extract trip 
point (i.e. VL=VR) voltage     

0.047744 

Fall time of VR during transient analysis 0.045796 

Vary VL during the retention mode of operation, find VL 
when dVR/dVL=-1 for trip point voltage<VL<VDD   

0.044916 

Vary VL during the retention mode of operation, find VR 
when dVR/dVL=-1 for trip point voltage<VL<VDD   

0.041186 

Vary VL during the retention mode of operation, find VR 
when dVR/dVL=-1 for 0<VL<trip point voltage 

0.041043 

Vary VL during the read mode of operation, find VR when 
dVR/dVL=-1 for 0<VL<trip point voltage 

0.040956 

Table II: The important features obtained by RF algorithm.  

 

IV. CONCLUSION 

A way to systematically model the bridge-defects in a 6T-
SRAM bit cell is explained which can provide a fast and 
effective way of studying the electrical behavior of the circuit 
with defects. Then, we have demonstrated an approach for 
predicting the locations of the defect in the circuit using a 
combination of HSPICE-generated defect database and 
machine learning. Our chosen set of algorithms, which are 
used as the predictive models, are trained with the electrical 
attributes calculated from the DC and transient response of the 
circuit. We have found that the proposed approach can achieve 
a fairly-high accuracy in predicting the defect location. Based 
on our approach, one can next try to predict the bridge-defect 
locations by incorporating multiple defects at a time. We 
believe that this ML-guided defect detection set up will further 
enhance the failure analysis success rate for more complicated 
circuits and systems. 
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Features  Importance 

Vary VR during the retention mode of operation, find VR 
when dVL/dVR=-1 for 0<VR<trip point voltage 

0.106309 

Vary VL during the retention mode of operation, find VR 
when dVR/dVL=-1 for trip point voltage<VL<VDD 

0.093608 

Vary VR during the retention mode of operation, find VL 
when dVL/dVR=-1 for trip point voltage<VR<VDD 

0.089980 

Vary VR during the read mode of operation, extract trip 
point (i.e. VL=VR) voltage 

0.082425 

Vary VR during the retention mode of operation, find VL 
when dVL/dVR=-1 for 0<VR<trip point voltage 

0.068046 

Vary VR during the read mode of operation, find VL when 
dVL/dVR=-1 for 0<VR<trip point voltage 

0.067159 

Vary VL during the read mode of operation, extract trip 
point (i.e. VL=VR) voltage 

0.065915 

Vary VR during the retention mode of operation, extract 
trip point (i.e. VL=VR) voltage 

0.061861 

Time when VR=VL during transient analysis 0.054772 

Vary VL during the retention mode of operation, find VR 
when dVR/dVL=-1 for 0<VL<trip point voltage 

0.051099 

Vary VL during the retention mode of operation, find VL 
when dVR/dVL=-1 for 0<VL<trip point voltage 

0.046997 

Rise time of VL during transient analysis 0.041418 

Table III: The important features obtained by XGBoost algorithm.  

Features  Importance 

Rise time of VL during transient analysis 0.108148 

VR=VL during transient analysis 0.075728 

Vary VR during the read mode of operation, find VL when 
dVL/dVR=-1 for trip point voltage<VR<VDD 

0.073770 

Vary VR during the retention mode of operation, find VL 
when dVL/dVR=-1 for trip point voltage<VR<VDD 

0.068021 

Vary VL during the retention mode of operation, find VR 
when dVR/dVL=-1 for trip point voltage<VL<VDD 

0.067776 

Vary VL during the read mode of operation, find VR when 
dVR/dVL=-1 for trip point voltage<VL<VDD 

0.067531 

Fall time of VR during transient analysis 0.062638 

Vary VR during the retention mode of operation, extract 
trip point (i.e. VL=VR) voltage 

0.051872 

Vary VL during the retention mode of operation, extract 
trip point (i.e. VL=VR) voltage 

0.047101 

Vary VL during the retention mode of operation, find VL 
when dVR/dVL=-1 for 0<VL<trip point voltage 

0.042696 

Vary VR during the retention mode of operation, find VR 
when dVL/dVR=-1 for 0<VR<trip point voltage 

0.042696 

Time when VR=VL during transient analysis 0.041228 

Table IV: The important features obtained by LightGBM algorithm.  
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