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Abstract—We discuss device models employed in the drift-
diffusion simulation of MOSFET transistors at deep cryogenic
temperatures. We report potential issues of the commonly used
models (the Philips unified mobility model, the high field satura-
tion model, the incomplete ionization model, and the quantization
model) at low temperatures and how to resolve the issues. In ad-
dition, we present a band tail model to capture the subthreshold
slope saturation at low temperatures. We also discuss how to
obtain the initial solution and perform the bias ramping to avoid
convergence issues. As an application, we study the temperature-
dependent operation of a gate-all-around transistor down to 4
K.

I. INTRODUCTION

MOSFET Operations at deep cryogenic temperatures have
recently gained attention with the advancement of quantum
computers [1]. While there exist studies on the drift-diffusion
(DD) model at around 77 K [2], [3], DD simulation down
to the liquid He temperature (' 4 K) important for quantum
applications has not been extensively studied [4]–[7].

TCAD simulation of MOSFET operations at 4 K is quite
challenging due to numerical instabilities and model uncertain-
ties. For example, the intrinsic carrier density in Si cannot be
represented in double precision at 4 K. With kT = 0.34 meV,
small fluctuations in electrostatic potential can result in large
fluctuations in carrier density. In addition, commonly em-
ployed TCAD models can give unexpected results at low
temperatures as they are usually developed for the typical
operating temperature range (−55 ◦C < T < 150 ◦C).

This paper presents a few practical considerations which
are relevant to enable DD simulations at deep-cryogenic
temperatures. As an application, we study the temperature-
dependent operation of a gate-all-around transistor (GAAFET)
down to 4 K using our in-house device simulator.

II. MODELS FOR BULK PROPERTIES

A. Philips Unified Mobility Model

The first model to consider is the Philips unified mobility
model [8], [9]. While it is the standard model to consider bulk
mobility, it can cause instabilities at very low temperatures due
to the G (P ) function which represents the ratio of the majority
to minority carrier mobility as shown in Fig. 1. When T ≤
55 K (70 K) for electrons (holes), G (P ) can have negative
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Fig. 1. The ratio of the majority to minority carrier mobility, G, as a
function of the parameter P in the Philips unified mobility model [8], [9].
The G (P ) can have negative values when T ≤ 55 K (70 K) for electrons
(holes), which results in unphysical mobility values. A simple correction to the
G (P ) function (G ← 10−2 exp

[(
G− 10−2

)
/10−2

]
when G < 10−2)

is introduced to prevent G (P ) from becoming negative at low temperatures.

values, which results in unphysical mobility values. To fix this
issue, the following simple correction to the G (P ) function:

G← 10−2 exp
[(
G− 10−2

)
/10−2

]
when G < 10−2 (1)

is introduced to prevent G (P ) from becoming negative at
low temperatures. In addition, the temperature exponent of the
lattice scattering mobility term is slightly updated to capture
the temperature dependence at low temperature, as shown in
Fig. 2.

B. High Field Saturation Model

The second model to consider is the high field saturation
model. For room temperature simulations, we typically employ
the Canali model [14]. However, the Canali model gives
inaccurate results at low temperatures, as shown in Fig. 3
(b) and (d). On the other hand, the Selberherr model [2]
can provide much better results at low temperatures (Fig. 3
(a) and (c)). For electron mobility, we employed the original
parameter set from [2]. For hole mobility, we slightly adjusted
the saturation velocity vsat

p and the β parameter as follows:

vsat
p = 9.5 · 106 cm/s ·

√
tanh

(
312 K
T

)
(2)
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Fig. 2. Temperature dependence of the low-field electron mobility ob-
tained from the Philips unified mobility model [8], [9] for different dop-
ing concentrations. Compared with the original model (dashed line), the
temperature exponent of the lattice scattering mobility term is changed to
θ = θ0 + θT [tanh (T/T0)− 1] with θ0 = 2.285, θT = 0.55, and
T0 = 250 K. The symbols are from the theoretical and experimental data
from [10], [11]. Incomplete ionization model from [12], [13] is employed.

β = 0.823 + 0.39 ·
(

T

300 K

)0.5

(3)

where T is the lattice temperature. The differences with respect
to the experiment at very low temperatures may be related
to the field-induced impurity ionization [7], [10]. We also
don’t recommend overfitting this behavior with too small β
parameter [14] as it can cause unphysical results as well as
convergence issues.

C. Incomplete Ionization Model

The third model is the incomplete ionization model. For
TCAD simulations, the conventional model [16] has been
traditionally employed with Boltzmann statistics [3]. However,
this model cannot give full ionization in the high concentration
limit when used with Fermi statistics, as shown in Fig. 4
(b). On the other hand, the Altermatt model [12], [13] gives
consistent results for both types of carrier statistics (see
Fig. 4). To obtain consistent results with Fermi statistics, we
implement the ‘full model’ based on the quasi-Fermi potential
((5) in [13]) rather than the ‘device model’ described in the
original paper ((8)–(10) in [13]).

III. MODELS FOR MOSFET SIMULATIONS

A. A Simulation Setup

As an application, we study the temperature-dependent
operation of a 3D GAAFET as shown in Fig. 5. The Poisson,
electron and hole continuity, and electron density-gradient
equations are solved self-consistently by the fully coupled
Newton method. The Philips unified [8], [9] and Lombardi
[17], [18] mobility models are employed for the low-field
mobility calculations together with the high-field velocity
saturation model [2]. The Altermatt incomplete ionization
model [12], [13] is considered both for the space charge and
the mobility.

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

H
o
le

 D
ri
ft
 V

e
lo

c
it
y
 [
c
m

/s
]

Electric Field [V/cm]

(c) Updated Selberherr Model

6 K
24 K
45 K
77 K

110 K
200 K
300 K
430 K

10
0

10
1

10
2

10
3

10
4

10
5

Electric Field [V/cm]

(d) Canali Model

6 K
24 K
45 K
77 K

110 K
200 K
300 K
430 K

10
5

10
6

10
7

E
le

c
tr

o
n
 D

ri
ft
 V

e
lo

c
it
y
 [
c
m

/s
]

(a) Selberherr Model
lines: model
symbols: measurement

8 K
20 K
45 K
77 K

110 K
200 K
300 K
430 K

(b) Canali Model
lines: model
symbols: measurement

8 K
20 K
45 K
77 K

110 K
200 K
300 K
430 K

Fig. 3. Comparison of the carrier velocity-field relation for different temper-
atures obtained from the Selberherr model [2] [(a) and (c)] and the Canali
model [14] [(b) and (d)] with the measurement data [10], [15]. The Selberherr
model is suitable for DD simulations at low temperatures. For (a), the original
parameter set from [2] is employed. For (c), the saturation velocity vsatp and
the β parameter are given by (2) and (3), which is slightly different from [2].
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Fig. 4. Comparison of the incomplete ionization models (conventional model
[16] (dashed lines) and Altermatt model [12], [13] (solid lines)) with (a)
Boltzmann Statistics and (b) Fermi statistics. For both Boltzmann and Fermi
statistics, the Altermatt model provides the expected full ionization due to the
Mott (metal-insulator) transition in the high concentration limit.



Fig. 5. Simulated 1/4 of 3D GAAFET structure. The Poisson, the electron
and hole continuity, and the electron density-gradient equations are solved
self-consistently by the fully coupled Newton method. Fermi statistics is used.
Philips unified [8], [9] and Lombardi [17], [18] mobility models are employed
for the low-field mobility together with the high-field velocity saturation model
from [2]. Incomplete ionization model from [12], [13] is considered both for
the space charge and the mobility (neutral impurity scattering is neglected).
The quantum correction along the transport direction is turned off.

B. Density-Gradient Model

As for the density-gradient model, there exist two different
formulations: the original model based on the carrier density
[19] and the quantum potential-based model [20]. When Boltz-
mann statistics is employed, the two models give essentially
the same results. With Fermi statistics, however, they can
give significantly different results at low temperatures due to
the degeneracy effects (see Fig. 6). Only the density-based
formulation provides proper quantization at low temperatures.
In addition, the unphysical behavior of the potential-based
model can also cause convergence issues below 10 K.

C. Initial Solution and Bias Ramping

At low temperatures, obtaining the initial solution of the
coupled Poisson and density-gradient equations can be diffi-
cult. To get the solution, we multiply a prefactor f to the
quantum potential Λn as

Λn = −f h̄
2γ

6mn

∇2
√
n√
n

, (4)

and ramp up f from 0 to 1 to gradually acquire the quantum
solution from the classical one (where γ, mn, and n are the
quantum potential factor, effective mass, and electron density,
respectively).

The bias ramping direction is also important to ensure con-
vergence [6]. For example, we ramp the bias in the following
order to obtain the ID − VG characteristics for VD = 0.75 V:
(VG = 0.75 V, VD = 0 V) → (0.75 V, 0.75 V) → (0 V,
0.75 V). During the gate bias ramping from the on-state to
the off-state, we exit the ramping if the drain current becomes
smaller than a certain threshold (10−15 A).

D. Band Tail Model

Fig. 7 shows the calculated ID − VG characteristics for
different temperatures. Similar to the experimental results [1],
the temperature reduction increases the on-current and the

Fig. 6. Comparison of the electron density profile at the center of the
GAAFET obtained from the density-gradient model with the original density
formulation [19] ((a), (b), and (c)) and the potential-based formulation [20]
((d) and (e)). Only the density-based formulation gives a proper confine-
ment behavior near the Si/SiO2 interface at low temperatures. In addition,
potential-based formulation causes convergence issues at 4 K.

threshold voltage while reducing the subthreshold slope (SS).
The DD model predicts that the SS is proportional to the lattice
temperature. On the contrary, the experimental SS cannot
decrease further once it reaches its lower limit at around 50
K due to the presence of band tails [21], [22]. To capture this
effect, we model the electron density due to the band tail as:

ntail = T0 (NC/T ) / {1 + exp [(EC − EFn) /kTx]} (5)

where Tx =
(
T 8 + T 8

0

)1/8
, Nc is the conduction band

effective density-of-states, EFn is the electron quasi-Fermi
energy, EC is the conduction band energy (including quantum
correction), k is the Boltzmann constant, T is the lattice
temperature, and T0 = 50K is a model parameter. This
expression can be regarded as an approximation to the more
rigorous formula derived from the exponential band tail [21],
[22]. Fig. 8 compares the calculated subthreshold slope as a
function of temperature with and without the band tail model.
When ntail is added to the electron density, the temperature
dependence of the calculated SS becomes similar to the
experiment without affecting the on-current.

IV. CONCLUSION

We have demonstrated that the 3D TCAD simulation of
MOSFET operations at temperatures down to 4 K is possible
using our in-house device simulator. We have discussed a
few considerations for the mobility models, the incomplete
ionization model, the quantum correction model, and the band
tail model to realize the DD simulation at 4 K.
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reduced, the subthreshold slope (SS) and the on-current are improved while
the threshold voltage is increased.
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