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Abstract—In this work we present a finite element quasi-Fermi
implementation of a generalized first principles strain model for
silicon. Strain effects in silicon are often modeled with separate
mobility, bandgap, density of states, piezo-Hall, temperature,
and doping models. The current work encompasses these effects
by utilizing first principles and the finite element quasi-Fermi
method to write a conductivity tensor with the appropriate
carrier relationships.

Index Terms—Stress, Silicon, Piezoresistance, Sensors, Strain,
Hall, Bipolar Transistors

I. INTRODUCTION

Strain is introduced in many stages of the semiconductor
manufacturing process. This can be intentional to improve
device performance or unintentional as a result of material
property differences on wafer or in package. When a semi-
conductor product is employed in its application mechanical
forces on the silicon chip can be impacted by board soldering
or dynamic environmental changes such as temperature and
humidity. As a result of these influences strain can undesirably
affect the performance of product. Typical strain models con-
sider specific strain configurations and use linear coefficients,
such as piezoresistance [1], piezojunction [2], and piezo-
Hall [3]. These coefficients then need to be modified for
doping and temperature dependence. Other coefficients need
to be used for second order effects [4]–[6]. Device simulators
implement these linear coefficients with additional bandgap
and density of states corrections effects. However, all these
effects are derived from first principles theories and these
theories can be directly implemented into device simulators. A
more advanced model directly implementing the multivalley
mobility [7], [8] is present in some device simulators. The
model performs similar calculations to those performed in this
study but lumps the stress dependence terms into the mobility.
This captures temperature and doping dependence but needs
additional bandgap and density of states corrections to capture
bipolar effects. Its concepts would also have to be extended
to include the piezo-Hall effect.

In this study, we implement a first principles silicon
strain model in the Florida object-oriented device simulator
(FLOODS). The population of carriers is computed in each
band and used to compute anisotropic conductivities, which is
the key difference between this work and existing multivalley
models.

Motivation for development came from the lack of piezo-
Hall simulation capabilities in commercial device simulators.
Some simulators do not include the effect and other simulators
allow the input of the linear piezo-Hall coefficients. An exam-
ple of piezo-Hall simulation using linear coefficients is seen
in the literature [9]. However, implementing the temperature
effects of piezo-Hall is non-trivial with the linear coefficient
method.

Most Hall devices are electron majority carrier devices, as a
result, we will focus on electron transport but some results will
pertain to hole calculations. It also would be straight forward
to include magneto-resistance and magneto-resistance strain
effects within this simulation framework.

For ease of implementation finite element quasi-Fermi
(FEQF) discretization was used over the more traditional finite
volume Scharfetter-Gummel (FVSG) discretization. However,
it is likely that the presented model could be implemented
with FVSG discretization or a FVSG-like element. The FEQF
system of equations is shown in Eqns. (1), (2), (3), (4).
Poisson’s equation is shown in Eqn. (1). Ψ is the electrostatic
potential, q is the fundamental electric charge, p is the hole
concentration, n is the electron concentration, N+

D is the donor
concentration, N−

A is the acceptor concentration.

∇ · (ε∇Ψ) = −q(p− n+N+
D −N

−
A ) (1)

The electron and hole concentrations are seen in Eqn. (2).
Where J is the current density and U is a recombination term.

∂n

∂t
=

1

q
∇ · Jn − Un

∂p

∂t
= −1

q
∇ · Jp − Up

(2)

Current is defined in Eqn. (3). Mobility is represented by µ
and quasi-Fermi level is represented by Φ.

Jn = −qµnn∇Φn

Jp = −qµpp∇Φp
(3)

Electron and hole carrier relationships are in Eqn. (4). We
use Fermi-Dirac (F1/2) statistics defined at the conduction
band edge (Ec) and the valance band edge (Ev). The carrier
concentration at the conduction and the valance band edge
are defined as Nc and Nv respectively. Temperature (T ) and
Boltzmann’s constant (k) are also present.
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n = NcF1/2

(
Ec − Φn
kT

)
p = NvF1/2

(
Φp − Ev
kT

) (4)

The continuous current definition provided by FEQF dis-
cretization [10], seen in Eqn. (5), allows for a simple tensor
definition of conductivity, where the normal terms describe
anisotropic electrostatic transport and shear terms describe the
Lorentz force.

Jn = −

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

∇Φn (5)

Note that the tensor conductivity in Eqn. (5) is equivalent
to the isotropic mobility Eqn. (2) when no magnetic field is
present and the diagonal terms are equivalent. This relationship
is illustrated in Eqn. (6).

Jn = −

 σ 0 0
0 σ 0
0 0 σ

∇Φn = −qµnn∇Φn (6)

Silicon and germanium electron bandstructure and behavior
under the influence of strain is well established and has been
known since the 1950s [11]–[15]. Silicon has 6 degenerate
ellipsoidal shaped valleys near the X-symmetry point. In
the 〈100〉 conduction of current, two valleys are considered
longitudinal and four are considered transverse. Fig. 1 shows
a sketch of the silicon electron Fermi surfaces. The curva-
ture of the valleys is indicative of the effective mass, thus
transverse valleys have mobilities about five times larger than
longitudinal mobilities. This means the transverse mobilities
are about two times larger than the perpendicular mobilities.
These factors cause current conduction to be dominated by
the four transverse valleys. It should be noted that illustrated
in Fig. 1, current induced by the Lorentz force is dominated
by the two valleys parallel to the magnetic field since these
two valleys have mobilities transverse to the electrostatic and
induced current.

II. METHODS

Silicon electron transport behavior due to strain (ε) can be
comprehensively handled with deformation potential theory
[11] and accounting for the splitting of transverse mobilities
[14]. The deformation potential coefficients, Ξu and Ξd,
calculate the change in band edge energy ∆E in the three
principle directions due to strain, seen in Eqn. (7). It should
be noted that Ξd plays a larger role in bipolar devices where
the magnitude of the bandgap change is important. These
principle directions are the directions of the six ellipsoids,
γ = {〈100〉, 〈010〉, 〈001〉}. Crystal directions are also short-
ened with 1 as 〈100〉, 2 as 〈010〉, 3 as 〈001〉.

Fig. 1. 3D Fermi surface sketch of the six electron valleys in silicon.
Each ellipsoid is aligned along 〈100〉, 〈010〉, 〈001〉, 〈1̄00〉, 〈01̄0〉, 〈001̄〉.
We consider ellipsoids along the same axis to be degenerate yielding three
ellipsoids for carrier concentration calculations. An example of the Lorentz
force in the dominate ellipsoid is shown.

 ∆E1

∆E2

∆E3

 =

 Ξu + Ξd Ξd Ξd
Ξd Ξu + Ξd Ξd
Ξd Ξd Ξu + Ξd

 ε11

ε22

ε33

 (7)

This change in energy redistributes the population of elec-
trons between the six ellipsoidal electron conduction bands.
Eqn. (8) gives carrier relationships using Fermi statistics to
calculate the carrier concentrations in the 3 principle direc-
tions, nγ .

nγ = Nc ∗ F1/2((Ec − Fn −∆Eγ)/Vt) (8)

Each of the three non-degenerate ellipsoids contributes to
the conduction of electrons with a different effective mass
depending on if the current is parallel (m∗

l ) or transverse
(m∗

l ) to the major axis of the ellipsoid. These longitudinal
and transverse effective masses are used to calculate the
respective longitudinal (µl) and transverse (µt) mobilities.
When strain redistributes the electrons between conduction
bands, the conductivity is changed from the reweighting of
the different mobilities, seen in Eqn. (9). The nature of the
reweighting gives three different uniaxial conductivities (σ11,
σ22, σ33).  σ11

σ22

σ33

 =

 µl µt µt
µt µl µt
µt µt µl

 n1

n2

n3

 (9)

The relaxation time (〈τ〉) in each ellipsoid changes with the
bend edge shift [3], [16], [17]. Though the effective masses
(m∗) are constant for electrons under uniaxial strain, the



mobility is modified through this relaxation time shift in Eqn.
(10).

µγ =
q〈τ〉γ
m∗ (10)

The change in relaxation time can be approximated as
a linear shift with energy related through a proportionality
constant f = 10eV −1 [3].

∆〈τ〉γ
〈τ〉0

=
2

3
f∆Eγ (11)

Shear strain induces a splitting in the transverse mobilities in
ellipsoids whose major axis is perpendicular to the shear plane.
An example of this would be mt3 = 1±α0ε12, where α = 86.8
[14]. This is an important correction when considering crystal
orientation other than the principle axes of 〈100〉(001).

Choice of deformation potential constants is difficult as
there exists many measured values in the literature [11], [18]–
[20], as well as many others not cited. Table I gives the
choice of constants used for the piezo-Hall and piezojunction
results. There seems to be broad agreement on the effective
mass values. However in Kanda’s work [20], the deformation
potential parameters Ξu = 8.5 and Ξd = −5.2 are used.
These are substantially different and give different results
for the piezo-Hall effect. This is why in replicating Kanda’s
temperature dependences we use his deformation potential
parameters and all other results we use the values given in
Table I.

TABLE I
CONSTANTS

Const Value Reference
Ξu 10.5 [19]
Ξd 1.1 [19]

m∗
l /m

∗ 0.9161 [14]
m∗

t /m
∗ 0.1905 [14]

When magnetic field is introduced, terms that appear as
shear conductivities (σ23, σ13, σ12) account for the Lorentz
force. This force is both perpendicular to electrostatic current
flow and the magnetic field (B), where B1, B2, B3 are
the components of the magnetic field along the crystal axes.
Thus the behavior of the current induced by the Lorentz
force is controlled by both the mobility in the electrostatic
current direction as well as the induced direction. A similar
relationship to the electrostatic conductivities is written in Eqn.
(12). Here the off diagonals correspond to ellipsoids parallel to
electrostatic current flow and perpendicular to induced current
flow or vice versa. However, conduction is dominated by
the diagonal terms where both the electrostatic and induced
currents are perpendicular to the ellipsoid (µ2

t � µt ∗ µl).

 σ23

σ13

σ12

 =

 µ2
tB1 µlµtB1 µlµtB1

µlµtB2 µ2
tB2 µlµtB2

µlµtB3 µlµtB3 µ2
tB3

 n1

n2

n3

 (12)

Using the Lorentz force and the right hand rule the con-
ductivities are skew symmetric. Using this property we can
formulate the conductivity tensor seen in Eqn. (13).

σij =

 σ11 σ12 −σ13

−σ12 σ22 σ23

σ13 −σ23 σ33

 (13)

The conductivity tensor allows us to easily write our FEQF
transport in Eqn. (14). This conductivity tensor when coupled
with Poisson’s equation accounts for mobility, density of
states, and bandgap changes.

−∇ · (σij∇Fn) =
∂n

∂t
(14)

Until now we have assumed that the simulation axes (x, y, z)
have lined up with the axes of the crystal (〈100〉, 〈010〉, 〈001〉).
To simulate different crystal orientations the conductivity and
deformation potentials tensors must be rotated.

The same general ideas behind this model can be extended
to hole simulation. However, hole simulation is more complex
than electron simulation because the effective masses change
for both light and heavy holes. As of the writing of this
paper only certain crystal orientations have been implemented.
Bandgap and density of states changes have been extracted
from the LK Hamiltonian [21]. Mobilities for specific crystal
orientations have been taken from [22]. Hole relaxation time
effects have not been considered. Using these parameters a
similar conductivity tensor can be written to describe hole
behavior.

III. RESULTS

Validation of this model can be done by comparing results
against simulations done with the piezoresistance, piezo-Hall,
and piezojunction effects. An example of the linear piezore-
sistance (π) relationship between resistivity (ρ) and stress (s)
is shown in Eqn. (15).


∆ρ11
ρ

∆ρ22
ρ

∆ρ33
ρ

 =

 πl πt πt
πt πl πt
πt πt πl

 s11

s22

s33

 (15)

Both the piezoresistance model and this work modify the
conductivity. The piezoresistance model simply modifies the
value of the conductivity in a certain direction. While this
work modifies the carrier relationships and mobilities to yield
an effective conductivity change.

Piezoresistance and piezo-Hall factors are extracted to show
the inclusion of temperature and doping effects. These factors
multiply either of these linear coefficients to give the doping
and temperature dependence. The goal is to show temperature
and doping effects are included inherently without the need to
modify any equations.



A. Piezoresistance

Extracted piezoresistance coefficients at 50 MPa along with
values from Kanda’s paper are seen in Table II. Discrepancies
between Kanda’s values and this work are attributable to the
inclusion of second order effects [4], [6], [20] and the choice
of deformation potential constants.

TABLE II
PIEZORESISTANCE COEFFICIENTS (% / 100 MPA)

πl πt
Crystal Orientation Kanda This Work Kanda This Work
〈100〉(001) -10.2 -9.0 5.3 5.4
〈110〉(001) -3.1 -2.3 -1.8 -1.4

Fig. 2 compares FLOOXS simulated normalized π11 co-
efficient temperature and doping dependence to the same
“Piezoresistance factor” derived by Kanda [1].

Fig. 2. Comparison of Kanda piezoresistance temperature dependence cal-
culation and FLOODS simulation piezoresistance extraction. A 1um x 1um
grid with 1× 1016cm−3 uniform doping was used for the calculation.

B. Piezo-Hall

Fig. 3 shows the temperature and dopant concentration
dependences of the piezo-Hall factor. Some numerical noise
is evident at high temperatures and high doping. The inset of
Fig. 3 gives the normalized temperature dependence of the
piezo-Hall effect for a simple square n-type sensor. This is
a new result as no computed temperature dependence of the
piezo-Hall effect is seen in the literature.

C. Piezojunction

Fig 4. gives the nonlinear response of a bipolar transistor’s
collector current broken up into the mobility and ni compo-
nents. The ability of the model to calculate mobility changes
has been extensively discussed. This result is included to show
the model completely captures the bandgap narrowing and
density of states changes through its formulation. The ni term
contains the nonlinear response of the bandgap and density of
states changes. The bandgap and density of states changes are

Fig. 3. FLOODS simulation piezo-Hall extraction with doping concentration
and temperature. Inset shows temperature dependence at low doping values.

nonlinear with similar trends in both tensile and compressive
stress but different magnitudes. This is evident in the parabolic
nature of the ni curve.

Fig. 4. Bipolar transistor collector current vs stress. The constituent com-
ponents of the collector current change are shown as the extracted mobility
change (µ) and intrinsic carrier concentration change (ni)

IV. CONCLUSIONS

We have implemented a new TCAD comprehensive strain
model in FLOODS capable of simulating strain effects in
unipolar, bipolar, and Hall devices. This model produces re-
sults consistent with existing models and for the first time has
been able to investigate temperature dependence of the piezo-
Hall effect on a 3D structure. By implementing first principles
bandstructure information within the device simulator we
are able to account for temperature and doping dependence
without needing additional corrections.
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