Quantum Transport in Si:P $\delta$-Layer Wires

Juan P. Mendez  
*Cognitive & Emerging Computing*  
Sandia National Laboratories  
Albuquerque, USA  
jpmende@sandia.gov

Denis Mamaluy  
*Cognitive & Emerging Computing*  
Sandia National Laboratories  
Albuquerque, USA  
dnmamal@sandia.gov

Xujiao Gao  
*Electrical Models & Simulation*  
Sandia National Laboratories  
Albuquerque, USA  
xngao@sandia.gov

Evan M. Anderson  
*Multiscale Fab. Sci. & Tech. Dev.*  
Sandia National Laboratories  
Albuquerque, USA  
emander@sandia.gov

DeAnna M. Campbell  
*Biological & Chemical Sensors*  
Sandia National Laboratories  
Albuquerque, USA  
dmlope@sandia.gov

Jeffrey A. Ivie  
*Multiscale Fab. Sci. & Tech. Dev.*  
Sandia National Laboratories  
Albuquerque, USA  
jaive@sandia.gov

Tzu-Ming Lu  
*Quantum Phenomena*  
Sandia National Laboratories  
Albuquerque, USA  
tlu@sandia.gov

Scott W. Schmucker  
*Multiscale Fab. Sci. & Tech. Dev.*  
Sandia National Laboratories  
Albuquerque, USA  
swschmu@sandia.gov

Shashank Misra  
*Multiscale Fab. Sci. & Tech. Dev.*  
Sandia National Laboratories  
Albuquerque, USA  
smisra@sandia.gov

Abstract—We employ a fully charge self-consistent quantum transport formalism, together with a heuristic elastic scattering model, to study the local density of state (LDOS) and the conductive properties of Si:P $\delta$-layer wires at the cryogenic temperature of 4 K. The simulations allow us to explain the origin of shallow conducting sub-bands, recently observed in high resolution angle-resolved photoemission spectroscopy experiments. Our LDOS analysis shows the free electrons are spatially separated in layers with different average kinetic energies, which, along with elastic scattering, must be accounted for to reproduce the sheet resistance values obtained over a wide range of the $\delta$-layer donor densities.

Index Terms—quantum transport, Si:P $\delta$-layer systems, contact block reduction, NEGF, elastic scattering

I. INTRODUCTION

The electronic structure and conductive properties of Si:P $\delta$-layer systems have been a subject of experimental [1]–[5] and computational [6], [7] works due to the high potential for beyond-Moore computational applications. However, many discrepancies persist among these studies, and many questions still remain open, such as how many conductive modes exist, or the influence of the $\delta$-layer thickness and doping density on these conductive modes. Previous studies were based on traditional closed-system quantum approaches, either tight-binding [6] or DFT [7]. However, these approaches rely on two essential approximations: 1) the closed-system approximation that attempts to represent the density of states of a highly conductive system as $\text{DOS}(E) = \sum_{\alpha} \delta(E - E_{\alpha})$ and thus neglecting the quantum wire (continuum) states; 2) the (semi)classical approximations for the extraction of systems’ conductive properties assuming that the current is proportional to the electron density $j \sim n$ instead of the quantum-mechanical flux $j \sim \Psi \nabla \Psi^* - \Psi^* \nabla \Psi$ (that is zero for any closed system wave-function $\Psi$). In this work, we have employed a fully charge self-consistent open-system quantum transport (QT) formalism [8]–[10], which is free of the above mentioned approximations, together with an elastic scattering model, to study the conduction sub-band structure and the corresponding conductive properties of Si:P $\delta$-layer systems.

II. METHODOLOGY AND MODEL

A. Quantum transport method

To conduct this study, we have employed a quantum-mechanical transport framework for open systems [8]–[10] that relies on a fully charge self-consistent solution of the Poisson-open system Schrödinger equation in the single-band (Γ-valley) effective mass approximation. Fig. 1 shows a detailed flow chart of the method implemented in the QT simulator. For a numerically efficient implementation of the Non-Equilibrium Green’s Function (NEGF) formalism we utilized the Contact Block Reduction (NEGF) method [8], [9]; for the charge self-consistent solution of the non-linear Poisson equation we employed a combination of the open-system predictor-corrector approach and Anderson mixing scheme [10], [11]. The standard values of electron effective masses $m_l = 0.98 \times m_e$, $m_t = 0.19 \times m_e$ and the dielectric constant...
$\epsilon_{Si} = 11.7$ of Silicon were employed in our calculations, as well as the cryogenic temperature of 4 K.

**B. Elastic scattering model**

We can distinguish two types of elastic scattering that can occur in a device: 1) geometry scattering, due to the ohmic contacts, doping profile, device geometry, etc.; and 2) defect scattering, due to defects, vacancies, impurities, etc. [12], [13]. The former one is already taken into account by the charge self-consistent QT framework. However, the second one needs explicitly to be included in this framework. Thus, we introduce a heuristic elastic defect scattering model for mesoscopic and macroscopic scale, which treats the defects as abstract scatterers. We consider that scatterers are spatially equally distributed along the conductor channel and can be defined by a linear defect density $\nu$. Fig. 2 shows the schematic elastic scattering model, formed by $M$ modes with $N_m$ scatterers, where $m = 1, ..., M$. In general, each transmission mode can possess a different linear defect density $\nu_m = N_m/L_m$, where $L$ is the length of the channel device. If the electronic transmission for mode $m$ across the conductor without scatterers is given by $T_{mm}(E)$ at energy $E$, then the effective electronic transmission for mode $m$ including $N_m$ scatterers can be computed as [14]

$$\frac{1 - T_{eff}^{mm}(E)}{T_{eff}^{mm}(E)} = \frac{1 - T_{mm}(E)}{T_{mm}(E)} + \sum_{i=1}^{N_m} \frac{1 - T_{eff}^{(i)}(E)}{T_{eff}^{mm}(E)},$$

where $T_{eff}^{(i)}(E)$ is the defect transmission probability due to scatterer $i$ in mode $m$. The first term in (1) accounts for geometry scattering, whereas the second term encompasses for defect scattering. In absence of defects, i.e. $T_{eff}^{(i)}(E) = 1$ with $i = 1, ..., N$, the effective transmission function $T_{eff}^{mm}(E)$ reduces to $T_{mm}(E)$, as expected. If we assume that the defect transmission probability is the same for all scatterers, i.e. $T_{eff}^{(i)}(E) = 1$, the effective transmission probability can be rewritten as

$$T_{eff}^{mm}(E) = \frac{1}{1 + \frac{1 - T_{mm}(E)}{T_{mm}(E)} + L \nu_m \frac{1 - T_{eff}^{mm}(E)}}.$$  

(2)

The term $\nu_m(1 - T_{eff}^{mm})/T_{eff}^{mm}$ is of the order of $1/L_m$ [14], where $L_m$ is the mean free path. Therefore, it can be approximated as $\alpha/L_m$, where $\alpha$ is an adjustable parameter that is proportional to the linear defect density in the system. More complex elastic scattering models can be employed in this framework, e.g., models in which the defect transmission probability is energy-dependent.

The total current density $J$ from source to drain can be then calculated from the Landauer formula as

$$J = \frac{2e}{h} \int \sum_{m=1}^{M} T_{eff}^{mm}(E)(f_S(E) - f_D(E))dE,$$

(3)

where $e$ is the electron charge and $h$ is the Planck’s constant. The equilibrium distribution functions for source and drain leads are $f_S(E)$ and $f_D(E)$, respectively.

**C. Computational model**

The geometry of the Si: P $\delta$-layer wire is shown in Fig. 3, which is composed of a Si body, a very high P-doped layer, and a Si cap. The conductor channel is in contact with two semi-infinite leads, the source and drain, respectively. For simplicity, we only focus on symmetric configurations, where the widths, $W$, and acceptor doping concentrations, $N_A$, of the body and cap are chosen to be the same. Asymmetric doping would result in an asymmetric electron distribution around the $\delta$-layer plane. Similarly, we chose the body and cap widths as large as possible to avoid additional border effects on the electron confinement around the $\delta$-layer ($W = 10$ nm). The wire length is set to $L = 50$ nm. An acceptor doping density in the Si body/cap of $1.0 \times 10^{17} \text{ cm}^{-3}$ was used throughout this work.
III. Results and Discussion

A. Electronic structure

The DOS of the system at equilibrium conditions is included in the left panel of Fig. 4. The DOS results reveal the presence of conducting sub-bands (below the Fermi level) corresponding to $1\Gamma$ and $2\Gamma$ valleys, respectively, recently observed in high-resolution angle-resolved photoemission spectroscopy experiments (ARPES) [4], [5]. To get a better insight of the electronic structure in Si: P $\delta$-layer systems, we take a look at the LDOS(E,z) in the YZ plane, included in the right panel of Fig. 4 for a 20 nm-width wire. The LDOS presents a peculiar quantization of the modes in space and energy, which we have referred to as “Quantum Menorah”. The occupied modes below the Fermi level are independent of the encapsulation depth of $\delta$-layer from the surfaces of the Si cap/body, as shown in the left panel of Fig. 4 for $W = 20$ and 40 nm. The LDOS also reveals that the free electrons are strongly confined spatially around the $\delta$-layer, however, they are distributed in layers with different kinetic energies.

Our simulations also indicate that the number of sub-bands and the corresponding structure is strongly influenced by the thickness and doping density of the $\delta$-layer, as shown in Fig. 5 (upper and middle panel). The effect of the Si body/cap doping on the conduction sub-bands turns out to be secondary, as shown in the lower panel of Fig. 5. For a fixed $\delta$-layer thickness, the increment of the sheet doping increases the number of conducting modes, as well as the splitting energy between them. In contrast, for a fixed sheet doping, the increment of the $\delta$-layer thickness increases the number of modes, but decreases the energy splitting between them, which is in agreement with the ARPES observation in [5]. This is the result of the electronic confinement around the $\delta$-layer: smaller layer thickness and higher doping create a stronger potential well (see right panel of Fig. 4) that leads to higher electronic confinement around the $\delta$-layer and, therefore, an increased energy difference between sub-bands.

B. Conductive properties

With our QT framework and the elastic scattering model for meso- and macroscopic scale, we can compute the sheet conductance of the system. The results are included in Fig. 6 for a wide range of donor doping concentration, from $4.0 \times 10^{11}$ cm$^{-2}$ to $5.0 \times 10^{14}$ cm$^{-2}$, and $\delta$-layer thicknesses, from 2 nm to 5 nm. To account for the linear increase of the mean free path $L_m$ with the sheet doping density reported in [15], we approximated the term $\nu_m(1-t_m)/t_m$ in (2) as $\alpha/L_m(N_D)$, where the values of $L_m(N_D)$ were taken from [15] and $\alpha$ was set to 1.0. Moreover, our simulations reproduce the experimental sheet resistance data (see Fig. 7) obtained by several groups [15]–[18].
mainly determined by the thickness and sheet doping density of the δ-layer. The effect of the acceptor doping density in the Si body/cap is secondary and negligible. Furthermore, by applying an elastic scattering model in our QT framework, we reproduce the sheet resistance values measured by various experimental groups. Finally, we report that the conductance of the system increases with the increment of the δ-layer thickness for high sheet doping densities.

REFERENCES


Fig. 6. Sheet conductance for Si:P δ-layer wires in function of the δ-layer thickness and doping density (for the linear impurity density α = 1.0).

Fig. 7. Comparison of the sheet resistance for different δ-layer thicknesses, from 2 nm to 8 nm, and doping densities against experimental data [15]–[18].