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Abstract — We review our recent results on the modeling of 
silicon spin qubits. We describe, in particular, the methodology 
we have set-up for the simulation of these devices, and give some 
illustrations on silicon-on-insulator (SOI) qubits. We discuss, in 
particular, the electrical manipulation of electron and hole 
spins. 
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I. INTRODUCTION

A quantum bit (qubit) is a device where an information is 
stored as a coherent superposition |߰ۧ = Ͳۧ|ߙ +  of two 1ۧ|ߚ
quantum states |Ͳۧ  and |1ۧ  (for example, two spin states 
|Ͳۧ ؠ |՝ۧ, |1ۧ ؠ |՛ۧ). Such devices open new perspectives for 
information processing, thanks, e.g., to the intrinsic 
parallelism afforded by the superposition of inputs/outputs. 
Protecting this superposition from decoherence and relaxation 
(drifts in α, β due to noise and unwanted interactions) is, 
however, one tremendous challenge (among others) [1]. 

The spins of electrons confined in semiconductor quantum 
dots (QDs) actually make promising solid-state qubits with 
good prospects for large scale integration [2, 3]. High fidelity 
single and two qubits gates have been demonstrated in III-V 
materials as well as in silicon [4, 5, 6, 7]. Silicon is an 
attractive material for quantum information devices because 
the majority 28Si isotope has no nuclear spin, effectively 
decoupling electron and hole spins from the lattice and 
allowing for longer coherence times [8]. Also, silicon benefits 
from the strong portfolio of technologies developed in 
conventional micro-electronics for the design of complex and 
scalable devices. 

Many aspects of the physics of silicon qubits are, however, 
still poorly understood. It is, therefore, essential to 
complement the experimental activity with microscopic 
modeling able to give insights into the operation of these 
devices and provide guidelines for their optimization.  

In this paper, we review the methodology we have set-up 
for the modeling of spin qubits in semiconductors. We then 
discuss some applications to electron and hole qubits in 
silicon-on-insulator (SOI) devices. We first give a short 
introduction to these devices (section II), then outline the 
modeling methodology (section III), and discuss the 
manipulation of spin qubits as an illustration (section IV). 

II. SPIN QUBITS ON SOI
We focus on the SOI devices fabricated in Grenoble as an 

illustration (Fig. 1). The layout of these devices resembles 
conventional silicon nanowire Trigate MOSFETs [9, 10, 11]. 
Thanks to larger source/gate and gate/drain spacers, the 
devices go into the Coulomb blockade regime at low 
temperature: quantum dots form under the gates, in which the 
number of carriers can be controlled by the bias voltages. The 
information is then stored in the spin of the carrier(s) trapped 
under the gates. For that purpose, the |՛ۧ and  |՝ۧ spin states 
are split by a static magnetic field B. This Zeeman splitting 
ȟܧ = ܤ஻ߤ݃  (where ݃ ؄ 2  and ߤ஻ is Bohr’s magneton) is 
typically of the order of a few tens of µeV, which is one of the 
reasons why the devices must be operated at very low 
temperatures (< 100 mK). 

The spin can then be manipulated by radio-frequency (RF) 
bursts on the gates, resonant with the Zeeman splitting 
between the up and down spins (∆E ؄ 40 µeV � frequency 
fL  ؄ 10 GHz). Coherent photon absorption and stimulated 
emission indeed drive rotations of the spin called “Rabi 
oscillations”. Starting from the ground-state |՝ۧ,  any 
superposition |߰ۧ = ՝ۧ|ߙ +  ՛ۧ can in principle be reached|ߚ
that way. The number of spin rotations per unit of time is 
characterized by the Rabi frequency fR << fL (typically 1 to 
100 MHz). Note that the spin must be coupled to the orbital 
motion of the carrier under the gate by spin-orbit coupling 
(SOC) in order to be manipulated with a RF electric field. 
SOC is, however, known to be very weak in the conduction 
band of silicon. Alternatively, the spin can be manipulated 
with the RF magnetic field produced by a nearby current line. 

The second dot on Fig. 1 is used to measure the spin in the 
qubit through “Pauli spin blockade”: The source-drain current 
is indeed blocked when the spins in the two dots are parallel 
(“triplet” state) because the carriers can not tunnel from one 
dot to the other (“two carriers with same spin can not occupy 
the same level”). More complex one and two-dimensional 
layouts (bearing less resemblance to traditional MOSFETs) 
have been designed in order to allow for more versatile 
interactions between qubits (two qubit gates). These 
interactions are controlled by inter-dot tunneling and 
Coulomb repulsion, which translate into an effective 
“exchange” interaction between spins. 
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III. METHODS 
We have developped a specific methodology for the 

microscopic modeling of spin qubit devices (Fig. 2).  

The potential landscape in the devices is first computed in 
the empty dots with a finite volumes Poisson solver. Screening 
by source/drain reservoirs can be taken into account at this 
stage with semi-classical approximations for the electron/hole 
carrier density in the contacts. 

Then, N single-particle states |߮௜ۧ	are calculated in this 
potential using either a multi-bands k.p or a tight-binding 
(TB) model [11, 12, 13]. TB captures the multi-valley 
character of the conduction band of silicon and SOC at the 
atomistic level. It can also describe atomic scale features such 
as surface roughness and impurities. It is, therefore, ideally 
suited to the microscopic modeling of qubits. Its numerical 
cost scales, however, at least linearly with the number of 
atoms. k.p calculations are, therefore, more suitable for large 
scale systems and hole qubits where the description of SOC is 
simpler (using either four or six bands k.p models). There also 
exists a four bands k.p model accounting for SOC in the 
conduction band [14]. The set of differential equations for the 
k.p envelope functions is discretized over a finite differences 
mesh. The matrices of relevant observables (such as spin, gate 
potentials, etc...) are then computed within the basis of the N 
|߮௜ۧ’s. These matrices can later be used to build effective, 
low-energy Hamiltonians for the qubits. 

As an illustration, the 3D model of an electron spin qubit 
in a silicon nanowire controlled by a partially overlapping gate 
is shown in Fig. 3. The location of the electron trapped under 
this gate is outlined in orange; the squared TB wave function 
of the ground-state is plotted in a transverse cross section in 
the inset. The electrons (and holes) tend to localize in the 
corner(s) covered by the gate [15], where the electric field is 
maximum. These devices, therefore, form low symmetry-
dots, which tends to enhance SOC [11, 16]. 

The many-electron states relevant for the modeling of 
multiply-charged dots, of Pauli spin blockade readout 

(singlet/triplet states), and of multi-qubit gates can then be 
computed with either mean-field approximations 
(Hartree/Hartree-Fock, usually performed within the reduced 
basis set of the N precomputed ߮௜’s), or with a configuration 
interaction (CI) method [17]. The latter captures the 
correlations among electrons and is most often the method of 
choice for the description of the many-electron physics. The 
principle of CI is to expand the many-particle wave function 
in a basis of Slater determinants built from a subset of M ߮௜’s. 
The basic inputs of CI are the Coulomb integrals: 

௜ܷ௝௞௟ = ߮௜	ᇱܚଷ݀	ܚଷ݀׭ (ܚ)∗௝߮(ܚ) ,ܚ)ܸ ௟߮(Ԣܚ)∗Ԣ)߮௞ܚ  (1)  (Ԣܚ)

where ܸ(ܚ,  Ԣ) is the potential created at point �ƍ by a chargeܚ
at point �. These integrals can formally be written as: 

௜ܷ௝௞௟ = ׬ ݀ଷܚ	ߩ௜௝∗ (ܚ) ௞ܸ௟(ܚ)  (2) 

where ߩ௜௝ (ܚ) = ߮௜∗(ܚ)߮௝  is (ܚ)is a joint density and ௞ܸ௟ (ܚ)
the potential created by the joint density ߩ௞௟(ܚ). The latter is 
obtained from the finite volumes Poisson solver using this 
(possibly complex)  joint density as input. The calculation of 
these integrals may be the most time-consuming part of the 
simulation. It can, however, be efficiently distributed over a 
large number of cores on a high-performance parallel cluster. 
The solution of Poisson and k.p equations as well as the 

 
Fig. 1: SEM image of a SOI device. The gates G1 and G2 control two 
quantum dots along a [110] Si nanowire (outlined by the dashed white 
lines). The dot under G1 is used as a filter to measure the spin in the 
qubit under G2 through Pauli spin blockade of the source-drain (S-D) 
current (current blocked when spins parallel). The electronic structure 
of the qubit is depicted in the inset. The information is encoded as a 
superposition of the up and down spin states split by a static magnetic 
field. The qubit is manipulated by radio-frequency pulses on G2, 
resonant with the splitting between the two spin levels. Adapted from 
[10]. 

 
Fig. 2: Computational methodology developed for the qubits. 

 

 
Figure 3: 3D model of a SOI device with a Si nanowire in yellow (cross 
section 30 nm × 10 nm), SiO2 in dark blue, and a partly overlapping, 30 
nm long gate in light blue. The location of the electron trapped under 
the gate is sketched in orange. A map of the squared TB wave function 
is plotted in the cross-section outlined by the dashed black lines. The 
orientation of the magnetic field B (see Fig. 6) is characterized by the 
angles θ and ϕ. 
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calculation of the ௜ܷ௝௞௟ ’s are actually parallelized within a 
mixed OpenMP+MPI scheme. The M ߮௜’s used to build the 
CI determinants may be pre-optimized with Hatree-Fock and 
the basis set of CI determinants filtered out in order to further 
speed-up the calculation.  

 As an illustration, the stability diagram computed for a 
“double dot” system similar to Fig. 1 is plotted in Fig. 4. This 
map gives the number of electrons (n1, n2) in dots 1 and 2 as a 
function of the gates voltages Vg1 and Vg2. It is used to find the 
relevant operating points for the qubits (dot filling, control of 
tunneling, etc...). The stability diagram can be constructed 
from the intra- and inter-dot charging energies extracted from 
the CI calculations.  

 Finally, the response of the system to various control 
signals and perturbations can be analyzed with a time-
dependent solver. For that purpose, the time-dependent 
Schrödinger equation [ܪ଴ + ۧ(ݐ)߰|[(ݐ)ܸ = ݅԰ ۧ(ݐ)߰|߲ Τݐ߲ 	is 
solved in a basis set of eigenstates of the “static” single- or 
many-particle Hamiltonian H0. The evolution operator 
between two time steps t and t+dt is expanded as a Chebyshev 
polynomial [16, 18] of the Hamiltonian (ݐ)ܪ = ଴ܪ +  .(ݐ)ܸ
Single/two-qubit gate operations and decoherence can be 
completely simulated in this framework starting from a 
microscopic (atomic scale) geometry, possibly including 
disorder (e.g., roughness and charged traps [16, 19]).  

 Such microscopic simulations can also provide valuable 
input parameters for the modeling of large scale arrays of 
qubits using effective Hamiltonians [20]. 

IV. APPLICATIONS

 We now discuss two applications dealing with the 
electrical manipulation of electron and hole spin qubits. 

A. Electron spin qubits.

SOC is known to be small at the conduction band edge of
silicon, partly due to the indirect nature of the bandgap. On the 
one hand, this effectively decouples the electron spins from 
electrical and charge noise as well as phonons, hence enhances 
spin lifetimes. On the other hand, this prevents the direct 

manipulation of the spin by RF electric fields, and hinders the 
electrical tuning of the gyromagnetic factor g and Zeeman 
splitting ȟܧ  that may be used to put spins in or out of 
resonance with a global RF magnetic field in order to address 
a particular qubit [21]. 

 Yet recent experiments have shown that SOC can be 
sizable in electron qubits. Ref. [11] for example has 
demonstrated clear fingerprints of electric dipole spin 
resonance (EDSR), that is of electrically driven spin rotations, 
in a device similar to Fig. 1. Detailed microscopic modeling 
unveiled the mechanisms at play in this device [11]. 

 The EDSR actually results from the interplay between spin 
and valley physics. Indeed, the X/Y/Z conduction band 
valleys are sixfold degenerate in bulk silicon [22]. Weak 
confinement in an anisotropic quantum dot such as those of 
Figs. 1 and 3 rises the X and Y valleys with respect to the 
ground-state Z valleys. Strong confinement at the steep 
Si/SiO2 interface further couples the +Z and −Z valleys, 
leaving two valley states ݒଵ and ݒଶ at low energy split by a 
valley splitting energy ∆, which can range from a few tens to 
a few hundreds of µeV depending on the vertical electric field. 

 Under a finite magnetic field, the |ݒଵ, ՝ۧ and |ݒଶ, ՝ۧ states 
go down in energy, while |ݒଵ, ՛ۧ and |ݒଶ, ՛ۧ  go up (Fig. 5). At 
some critical field BA, |ݒଵ, ՛ۧ and |ݒଶ, ՝ۧ cross and get mixed 
by SOC. Near the anti-crossing point, the |ݒଵ, ՛ۧ state admixes 
a significant fraction of  |ݒଶ, ՝ۧ. Since |ݒଵ, ՛ۧ and |ݒଶ, ՝ۧ can 
be coupled by an electric field, this allows for electrically 

Figure 5: (top panel) Single-particle energy levels in the conduction 
band of a thin Si quantum dot (see Fig. 3) as a function of the magnetic 
field. At zero field, the degeneracy between the ±Z valleys (inset of 
bottom panel) is lifted by steep confinement at the Si/SiO2 interface; the 
resulting ݒଵ and ݒଶ states are further split by the Zeeman interaction at 
finite magnetic field. The |ݒଵ, ՛ۧ  state anti-crosses the |ݒଶ, ՝ۧ  state 
around B = BA due to SOC; This enables electrically-driven Rabi 
oscillations between the lowest two states |Ͳۧ and |1ۧ as the electric 
dipole matrix element between |ݒଵ, ՝ۧ  and |ݒଶ, ՝ۧ  is finite. The 
calculated Rabi frequency is plotted in the lower panel (amplitude of 
the RF signal on the gate VRF = 1mV). Adapted from [16]. 

Figure 4: Stability diagram computed for a “double dot” system similar 
to Fig. 1. The number  of electrons (n1, n2) in dots 1 and 2 is given as a 
function of the gates voltages Vg1 and Vg2. Such maps can be 
reconstructed from the charging energies computed with CI. 
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driven rotations between the lowest two qubit states. The 
resulting Rabi frequency is plotted as a function of the 
magnetic field in the lower panel of Fig. 5. The Rabi frequency 
saturates beyond the anti-crossing point as the device becomes 
a “valley” qubit where the information is encoded into the  
valley states |ݒଵ, ՝ۧ  and |ݒଶ, ՝ۧ.  Such a valley qubit is, 
however, very sensitive to charge noise. 

 SOC is enhanced by the very low symmetry of the “corner 
dots” formed in SOI devices (Fig. 3). We have demonstrated 
that the valley splitting and the SOC can actually be tailored 
by front and back-gate electric fields; and have proposed a 
manipulation scheme where an almost pure spin qubit (well 
protected from charge noise but hardly controllable 
electrically) can be transformed back and forth into a spin-
valley qubit (or even a pure valley qubit) for fast electrical 
manipulation [16]. 

 

B. Hole spin qubits. 

 The physics of holes is very different yet extremely rich 
[10, 13]. There is no valley degree of freedom, but a strong 
interplay betwen heavy- and light-holes instead. The mixing 
between heavy- and light-hole envelopes in the quantum dot 
is actually a pre-requisite for the electrical manipulation of 
hole “spins”. Since SOC is much stronger in the valence than 
in the conduction band, electrical driving of hole spins can be 
very efficient, with Rabi frequencies reaching a few tens of 
MHz [9, 10]. 

 The linear response of hole spins to magnetic and electric 
fields can be described in a unified framework based on a 
gyromagnetic g-matrix and on its derivative with respect to 
the gate voltage [10, 13]. This g-matrix formalism can be used 
to analyze experimental data and to model spin qubits at a very 
low computational cost (Fig. 6). The figures of merit of holes, 
such as the Zeeman splittings and Rabi frequencies, show a 
much stronger dependence on the orientation of the fields than 
those of electrons − a fingerprint of the above-mentioned 
interplay between the heavy- and light-hole components. This 
can provide additional control knobs on the hole qubits, but 
may also enhance variability, and therefore calls for a careful 
design of the devices. 

 We have shown that silicon provides excellent 
opportunities for fast hole spin manipulation owing to its very 
anisotropic valence band that favors heavy- and light-hole 
mixing [23, 24]. We have also analyzed the response of hole 
spin qubits to strains [13, 23]. Semiconductor spin qubits in 
general tend to be very responsive to strains due to the small 
energy scales involved in these devices [25, 26].  

 

V. CONCLUSIONS 
 We have discussed the modeling of silicon spin qubits 
derived from MOS technologies. While CMOS modeling 
usually focuses on transport at room temperature in the high 
carrier density regime, spin qubits are operated in the opposite, 
few electrons and very low temperature limit. Therefore, the 
methods and tools needed to address qubit devices are 
different from those used for conventional CMOS; yet they 
can leverage on the knowledge brought by CMOS modeling 
on, e.g., disorder and scattering in MOS devices. 

 We have illustrated the relevance of modeling on a few 
examples dealing with the electrical manipulation of electron 
and hole spins. Modeling of decoherence, spin readout, and 
two-qubit gates will provide in the near future a more 
complete picture of the expected strengths and weaknesses of 
silicon qubits with respect to competing technologies. 
Modeling will also certainly play a leading role in assessing 
the variability of silicon qubit devices [16, 19]. 
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Figure 6: Map of the Rabi frequency (number of spin rotations per 
second, in MHz) of a heavy-hole spin qubit as a function of the 
orientation of the magnetic field, characterized by the angles θ and ϕ (see 
definition and device on Fig. 3) [13, 23].  The amplitude of the RF signal 
driving the rotations is VRF = 1mV and the magnitude of the magnetic 
field is B = 1T (the Rabi frequency being proportional to VRF  and B). 
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