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Abstract—Trigonal-Tellurium (t-Te), a van der Waals 
material, recently garnered interest to the nanoelectronics 
community because a high hole mobility, a high bandgap, and 
low temperature growth have all been observed in 
nanostructures. We analyze various t-Te nanostructures 
(nanowires and layers) using first principles simulations. We 
compare bandgap variation and relative stability among 
different shapes and sizes of Te nanostructures. We determine 
that nanowires host higher bandgaps and are preferentially 
grown, rather than layers of t-Te. We also propose a simplified 
model using the number of van der Waals interactions in 
explaining relative stability among t-Te nanostructures. Finally, 
we study uniquely shaped (auxiliary) t-Te nanostructures and 
verify that their stability obeys the same simplified model. 

I. INTRODUCTION 

As semiconductor devices shrink in size, common 
materials such as silicon have their mobilities reduced 
significantly [1]. Graphene offers a solution to the low 
mobility problem, but unfortunately does not offer a bandgap 
[2]. An alternative material of interest to the nanoelectronics 
community is trigonal tellurium (t-Te), which admits a high 
hole mobility even in nanostructures [3]. While t-Te, in 
contrast to graphene, does offer a nearly direct bulk bandgap, 
the bandgap is small (0.33 eV) [4]. However, at scaled 
dimensions, quantum confinement results in an increasing 
bandgap and this may reduce leakage current and improve 
tellurium’s prospects for use in future transistors. 

Structurally, t-Te comprises of one-dimensional (1D) 
helical chains with covalently bonded Te atoms. These Te-
helices manifests into a trigonal lattice though a mixture of 
van der Waals (vdW) interactions and covalent bonding. The 
overall trigonal structure, vdW interactions, and the covalent 

bonding are all consequences of Tellurium containing six 
valence electrons [5]. Historically t-Te was used in infrared 
detectors [6], thermoelectric [7], piezoelectric [8] and 
photoconductive devices [9]. 

Low-dimensional Tellurium allotropes, such as monolayer 
Tellurene have been investigated using first principles 
density functional theory (DFT). Notable allotropes are 
described in Zhu et. al. (ߙ ߚ , , and ߛ ) [10], Liu, Lin and 
Tomanek (ߜ and ߟ) [11], and Xian et. al. (square Tellurene) 
[12]. It is worth mentioning that only the ߚ allotrope bears 
resemblance to bulk t-Te. For monolayers, the ߜ ,ߙ, and ߟ 
allotropes are predicted to be more stable than the ߚ - 
allotropes with the ߟ allotrope being the most stable. Due to 
the approximations made in the DFT-treatment of the vdW 
interaction, determining the most stable t-Te nanostructure is 
challenging. Notably, different vdW models can change the 
order of the most stable monolayer structure. 

Here we employ first principles calculations with DFT to 
compare and analyze the stability of various t-Te 
nanostructures (layers of t-Te and nanowires). We calculate 
formation energies, study surface-to-volume ratios, and 
develop a simplified model to determine the stability of 1D 
nanostructure using the total energy associated with a Te-
helix with m helical-neighbors. We find that 1D hexagonal 
shaped nanowires are the most favored thermodynamically. 
We also include bandgaps and find that 1D triangle shaped 
nanowires feature the highest bandgaps (up to 1-2 eV) 
making t-Te an eye-catching channel material for extremely 
scaled field-effect transistors. 

Section II contains our results and discussion, section III 
describes our methodology and section IV is our conclusion. 

 
Figure 1. Illustration of all our computed t-Te nanostructures. Cross-sectional area of triangular (a), rhomboid (b), hexagonal (c) nanowires, 
and monolayer (d), bilayer (e), and trilayer (f) Tellurene nanoribbons, sheets of Tellurene (g), and auxiliary nanowires (h), and (i) 
nanoribbons. ܰ is the number of helices per nanowire side. ܴ is the number of helices on the longer nanoribbon side. ܮ is number of layers 
for Tellurene sheets. 
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II. RESULTS AND DISCUSSION 

Fig. 1 illustrates all t-Te nanostructures under 
investigation. We have three classes of nanowires (triangular, 
rhomboid, and hexagonal), three classes of nanoribbons 
(monolayer, bilayer, and trilayer), and monolayer to 
multilayer sheets of Tellurene. Additionally, we create some 
“auxiliary” nanowires and nanoribbons to supplement our 
main structures. 

A. Formation Energy 

Fig. 2 shows the calculated formation energies for all 
nanowires and nanoribbons. The nanoribbons have a higher 
formation energy than the nanowires for the same number of 
Te-helices. The order going from highest to lowest formation 
energy for the same number of Te helices is: monolayer (1L), 
bilayer (2L), and trilayer (3L) nanoribbons, then Triangular, 
Rhomboid, and Hexagonal nanowires. 

Rhomboid nanowires would be the most difficult Te 
nanowire to fabricate because hexagonal or triangular 
nanowires would be preferentially formed instead, depending 
on the environment. This is in line with earlier experimental 
findings [13]. 

Finally, Fig. 2 shows that the monolayer (1L) ribbon has 
an exceedingly high formation energy and will be very 
difficult to fabricate unless substrate interactions drastically 
alter formation energies. The 2L and 3L ribbons have 
formation energies much closer to those of the wires and may 
form in the presence of favorable substrate interaction. Note 
that the monolayer, shown in Fig 1g, has a fundamentally 
different structure. 1L nanoribbons approach this limit as they 
get wider, while the helices in 2L and 3L ribbons remain 
structurally similar to bulk t-Te. 

 
Figure 2. Formation energies for all 1D structures (excluding 
auxiliary structures) as a function of the total number of Te helices 
or cross-sectional area. The solid or open points are computed 
values. The dotted lines are power fits to guide the eye. 

Table 1 shows the formation energy for the auxiliary 
structures and Tellurene sheets shown in Fig. 1h and 1g. Two 
auxiliary nanowires (e.g., PM-2-1 and H-2) can have the 
same number of helices (e.g., 6 helices) but vastly different 
formation energies (e.g., 0.20 eV/atom and 0.27 eV/atom). 
These structures do not follow the simple trend of nanowire 
formation energy in Fig. 2, where formation energy variation 

is small across the triangular, rhomboid, and hexagonal 
nanowires as the number of helices is varied.  

The first three rows in Table 1b represent the lowest 
formation energies that monolayer, bilayer and trilayer 
nanoribbons can obtain. The formation energy quickly 
decreases with increasing number of layers. At around 7 
layers the formation energy decrease starts to taper as the 
layers more closely resemble bulk. 

 
Table 1. a) The Formation energy of the auxiliary structures with the 
number of Helices present and b) 2D sheets of Tellurene. 

To support our knowledge of the relative formation 
energies among nanostructures in Fig. 2, we calculate the 
surface-to-volume ratio, for all nanowires and the bilayer and 
trilayer nanoribbons (the auxiliary structures are excluded). 
The calculated surface-to-volume ratios are shown in Fig 3. 
Hexagonal nanowires have the smallest surface-to-volume 
ratio for the same number of helices. This agrees with Fig. 2 
where hexagonal nanowires also have the lowest formation 
energy for the same number of helices. Unfortunately, 
surface-to-volume ratio does not illustrate all formation 
energy differences. For instance, the bilayer and trilayer 
nanoribbons have a lower surface-to-volume ratio compared 
to the triangular nanowires when the nanoribbons have more 
than 14 and 27 helices respectively. Since the nanowires in 
Fig. 2 always exhibit a lower formation energy compared to 
the nanoribbons, surface-to-volume ratio does not tell the full 
story. 

 
Figure 3. Surface-to-volume ratio for the nanowires and the 
nanoribbons. Solid points are calculated values and dotted lines are 
power fits to guide the eye.  
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An alternative explanation is in the differing number of 
“happy” helices that have six nearest helical-neighbors. 
Nanowires will always have more “happy” helices compared 
to nanoribbons for the same total number of helices. To 
determine whether the number of neighboring helices is a 
good metric, we determine an energy penalty ߳௠ associated 
with each helix that has a given number (m) helices. 

Table 2 shows the resulting energy penalties determined 
using an ordinary least squares (OLS) fit as explained in the 
methods section. Significant energy penalties ranging from 
1.17 eV to 0.39 eV are observed for helices with six to one 
missing helical-neighbors respectively. The small value ߳଺ =
Ͳ.Ͳ2 eV indicates that the energy obtained from the OLS for 
helices with six helical-neighbors, is remarkably close to that 
of the bulk t-Te. To rule out large systematic errors between 
nanowire types, we verify that the order of largest to lowest 
formation energies observed in Fig. 2 is maintained using the 
energy penalties. We find that the formation energies of the 
auxiliary structures in Table 1a, the ones not used in the OLS 
fit, can be estimated within 3% error using the energy 
penalties. 

Keeping the missing neighboring helix picture in mind, 
we inspect the results in Fig. 2 and Table 1. Our triangular, 
rhomboid, and hexagonal nanowires have Te-helices with 
fewer missing helical neighbors compared to layers of 
Tellurene. Our auxiliary structures have a large number of Te 
helices with many missing helical neighbors. Therefore, the 
missing neighboring helix picture, in contrast to surface-to-
volume ratio picture, can explain why nanowires have lower 
formation energy than layers for the same number of Te-
helices. As noted before, this agrees with experimental 
growth, which also found that wires rather than layers are 
preferred [3]. 

 

Table 2. The energy penalties for having m helical-neighbors per 
unit cell determined using the OLS fit on all our structures. The 
energy penalty is relative to bulk t-Te. 

B. Electronic Properties 

The computed bandgaps in Fig. 4 ranges from 0.34 eV to 
1.46 eV.  When interpreting these bandgaps, the tendency for 
DFT to underestimate the bandgaps should be taken in mind. 
For example, DFT predicts a vanishing t-Te bulk bandgap. 
The bandgap for the N=2 Hexagonal nanowire (Fig 1c N=2, 
7 Helices) with hybrid HSE06 functionals [14] went from 
0.50 eV to 0.99 eV, that is about a factor of 2.  

Trends in nanowire bandgaps in Fig. 4 show that 
hexagonal, rhomboid, and triangular nanowires have lowest, 
intermediate, and the highest bandgaps respectively. 
Bandgap values start to decrease quickly at nanowire sizes 
around 7 helices (̱1.3	��ଶ). 

The computed bandgaps for the auxiliary nanowires and 
sheets of Tellurene are given in Table 3. The auxiliary 

nanowires and sheets of Tellurene have their bandgap range 
from 0.37 eV to 0.94 eV and 0.17 eV to 1.01 eV respectively. 
Unlike the nanowires in Fig. 4 where bandgaps start to 
decrease quickly at a size of 7 Te helices (̱1.3	��ଶ), the 
auxiliary nanowires do not exactly follow that same 
decreasing trend at 7 Te helices. For instance, the TF-8 
nanowire has 30 Te helices (̱4.8	��ଶ) but exhibits a high 
bandgap of 0.74 eV. 

 
Figure 4. Bandgap values for our Triangular, rhomboid and 
hexagonal nanowires as a function of the total number of Te helices 
or total nanowire cross sectional area. Solid and open points are 
calculated points while the dotted lines are power and logarithmic 
fits to guide the eye. 

 
Table 3. The computed bandgaps for a) auxiliary nanowires and b) 
sheets of Tellurene. 

III. METHODOLOGY 

A. Computational Details 

We employ DFT as implemented in the Vienna Ab initio 
Simulation Package (VASP) [15], using the generalized 
gradient approximated PBE functional [16], DFT-D3 vdW 
corrections [17], and a 200 eV kinetic energy cutoff for the 
plane wave basis. For charge density calculations: all 
nanowires, nanoribbons, sheets of Tellurene, and the bulk t-
Te use a 1x1x4, 1x1x4, 6x1x4, and 6x6x4 Monkhorst-Pack 
k-point sampling, respectively [18]. 

We relax the atomic positions of the bulk t-Te until all 
forces are lower than   0.005 eV/Å. From the bulk t-Te atomic 
coordinates and lattice parameters we construct and relax 
three classes of nanowires (Triangular, Rhomboid, and 
Hexagonal), three classes of nanoribbons (monolayer, 
bilayer, and trilayer), and monolayer to multilayer sheets of 
Tellurene. All auxiliary structures also created in the same 
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manner with the bulk t-Te atomic coordinates and lattice 
parameters. 

The formation energy is ܧி = ୲୭୲ܧ ୲ܰ୭୲Τ − ߳ୠ୳୪୩. Where 
 ୲୭୲ is the total ground state energy of a nanostructure, ୲ܰ୭୲ܧ
is the total number of atom per supercell of a nanostructure, 
and ߳ୠ୳୪୩ is the cohesive energy of the bulk t-Te. 

For bandgap calculations we sampled the first Brillouin 
zone with no less than 16 points between each symmetry 
point. Due to the relatively high mass of Tellurium we 
included spin-orbit coupling using methods developed by 
reference [19]. 

B. Surface-to-Volume Ratio 
For surface-to-volume-ratio calculations, we use lattice 

constants (c) plus a “quasi-lattice-constant” ( ෤ܽ) in the non-
periodic directions. 

To calculate ෤ܽ we separate all Te atoms into three planes 
normal to the z-axis. Within each plane, we calculate and then 
average out all the nearest neighbor distances ݀௣,௜  for each 
atom in the plane. Where i is the nearest neighbor atom (in 
terms of distance) index and p is the plane index. The average 
nearest neighbor distances across all three planes is the quasi 
lattice constant. As a closed form equation, the quasi-lattice-
constant is: 

 
෤ܽ =

1
3 ௜ܰ

෍෍݀௣,௜

ே೔

௜ୀଵ

ଷ

௣ୀଵ

 
 

(1) 

௜ܰ equals the total number of nearest neighbor distance per 
plane. Figure 2 illustrates the methodology for the N=3 
rhomboid t-Te nanowire. 

The surface-to-volume ratio for all nanowires and 
nanoribbons is ܣ௅/ܸ, where ܣ௅ is the lateral surface area and 
ܸ is the volume occupied by the structure. The volume for the 
nanowires and nanoribbons is ܸ =  ஻ is the baseܣ ஻ܿ whereܣ
area and c is the lattice constant in the z-direction. The 
nanowire base area is either a hexagon (ܣ஻ =
3ξ3(ܰ ෤ܽ	)ଶ 2Τ ), rhombus  ( ஻ܣ = ξ3(ܰ ෤ܽ)ଶ 2Τ ), or an 
equilateral triangle ( ஻ܣ = ξ3(ܰ ෤ܽ)ଶ 4Τ ). The nanoribbon 
base areas are parallelograms (ܣ஻ = ୠ୳୪୩ܴܽܮ 2Τ ) , where 
ܽୠ୳୪୩ is the bulk lattice constant which we calculate as 4.40 
Å. Monolayer ribbons lack a consistent definition of a quasi-
lattice constant, so we do not determine their surface-to-
volume ratio. 

To calculate the lateral surface areas, we use six ( ோܰ=6), 
four ( ோܰ=4), and three ( ோܰ=3) rectangles for the hexagonal, 
rhomboid, and triangular nanowire supercells, respectively. 

The total lateral surface area is ܣ௅ = ோܰܰ ෤ܽܿ where ோܰ is the 
number of rectangles and ܰ is the number of Te-helices per 
nanowire side. The lateral surface for the nanoribbons is 
computed in the same manner using rectangles. Their total 
lateral surface area is approximated as ܣ௅ ൎ 2 ௅ܰܽୠ୳୪୩ܿ +
2ܴܽୠ୳୪୩ܿ. 

C. Formation Energy of a Te-Helix 
We develop a simpler model of the formation energy by 

decomposing the formation energy ܧ୊  of a 1D Te 
nanostructure as an energy penalty per Te-helix, based on its 
number of helical neighbors. If the energy penalty of a Te-
helix with m-helical neighbors is given by ߳௠,  the total 
formation energy is approximated by 

 
୲୭୲ܧ ൎ ෍

݊௠߳௠
୲ܰ୭୲

଺

௠ୀଵ

 
 

(2) 

where ݊௠ is the number of Te helices with m nearest helical 
neighbors in the structure. 
We obtain the energy parameters ߳௠   by performing an 
ordinary least squares (OLS) fit on Eq. (2) for ݉ ൐ 1. We fit 
the parameters on the calculated formation energies for all 1D 
structures in Fig. 1, excluding the auxiliary nanoribbons. The 
energy penalty ߳଴  is simply the total energy difference 
between a single Te helix and a helix in the bulk t-Te. 

IV. CONCLUSION 

Our calculations have shown that hexagonally shaped t-Te 
nanowires are the most thermodynamically stable, while 
triangular shaped nanowires can host high bandgaps while still 
being thermodynamically stable. Layers of t-Te are not 
favorable to be grown compared to the nanowires. Nanowires 
are more stable than layers of t-Te because nanowires allow 
more vdW interactions per Te-helix. Based on the number of 
neighbors of a Te-helix, we create a simple model to predict 
the formation energy of any nanostructure of t-Te. Computing 
the bandgap, we show that small nanowires can have a 
bandgap of more than 1 eV for a cross section lower than 
around 1 nm2, making Te a promising material for future 
nanoelectronic applications. 
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Figure 5. Calculation of ෤ܽ  for the N=3 Rhomboid nanowire. All 
green, blue, and red atoms are in separate planes. There are 16 
distances in plane containing red atoms. There are 48 distances to 
average when calculating ෤ܽ  for the N=3 Rhomboid nanowire 
example when considering all three planes. 
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