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Abstract—A reduced-order model for quantum eigenvalue 
problems developed previously is revised and combined with 
the domain decomposition method to construct the quantum 
element method (QEM). The basic idea of the QEM is to 
partition a quantum domain structure into several subdomains 
or elements.  Each element is projected onto a functional space 
using the proper orthogonal decommission. These elements are 
then combined together to construct the whole domain 
structure. The proposed QEM has been demonstrated in 2 
quantum well structures constructed with several elements. The 
study illustrates that the QEM is capable of offering accurate 
prediction of wave functions and quantum eigenenergies with a 
substantial reduction in the numerical degrees of freedom 
compared to direct numerical simulation of the Schrödinger 
equation. 
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I. INTRODUCTION 
This study presents the quantum element method (QEM) 

that implements the quantum reduced-order model [1] based 
on the proper orthogonal decomposition (POD) [2]-[4] in the 
domain decomposition.  The basic idea of the QEM is to 
partition a domain of a quantum eigenvalue problem into 
smaller subdomains (or elements).  Each element is projected 
onto a functional space represented by a small set of basis 
functions (or modes) extracted from the POD. To construct a 
POD model for a large domain, the projected elements are 
glued together, and the interior penalty discontinuous 
Galerkin method [5],[6] is applied to stabilize the numerical 
solution and to achieve the continuity across the element 
interfaces.  The POD is able to optimize the basis functions 
(or POD modes) specifically tailored to the geometry and 
parametric variations of the problem and can therefore 
substantially reduce the degrees of freedom (DoF) needed to 
solve the Schrödinger equation with a high accuracy. 

A multi-element POD approach offers many advantages. 
First, to generate POD modes for a quantum eigenvalue 
problem, collection of wave function (WF) data in the 
simulation domain subjected to enough parametric variations 
is needed to “train” the modes [1].  In a large simulation 
domain especially with fine resolution, generation of POD 
modes of smaller subdomains is certainly more efficient. 
Second, domain decomposition possesses a nature advantage 
for parallel and/or distributed computing [7]-[10]. Finally, 
many quantum structures contain repeating substructures. If 
the selected elements appear frequently in a group of quantum 
structures, the quantum POD modes of these generic elements 
can be generated and stored in a technology library that can 
then be used for cost-effective simulation and design of large 
quantum structures. The POD approach has been successfully 
applied to thermal simulations of devices and integrated 
circuits with a high resolution [11]-[13].  It has been shown 
that the approach offers a reduction in numerical degrees of 
freedom (DoF) by 3-4 orders and 5-6 orders of magnitude in 
2D and 3D domains, respectively, compared to direct 
numerical simulation if solution with a high resolution is 
needed. 

II. QUANTUM ELEMENT METHOD 

A. Formulation of the Single-Element POD Model 

To generate an optimal set of modes, POD on WF data of 
electrons/holes for the quantum domain structure is applied 
based on the Fredholm equation of the second kind [2],[3], 
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where ⊗ is a tensor product and λ is the POD eigenvalue of 
the data representing the mean squared WFs captured by the 
corresponding POD mode η.  Once the POD modes are 
determined, the WF ߰(ݎԦ) in the domain is given by a linear 
combination of these POD modes,  
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where M is the selected number of modes or the DoF for 
representing the WF and aj are weighting coefficients. To 
derive an equation for Ԧܽ, the Galerkin projection is applied to 
the Schrödinger equation along ηi in the its POD space, 
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where m* is the electron/hole effective mass, = the reduced 
Planck’s constant, U the potential energy, E the quantum-state 
(QS) energy, and n̂  the outward normal vector of the 
boundary surface of the domain Ω.  The parametric variations 
are accounted for via U, which may be induced by external 
electric fields and/or the charge distributions in the structure. 

Using (2) in (3), an equation for a
G  in terms of the M×M 

Hamiltonian matrix Hη in POD space can be derived, 

 a E aη η=H G G , (4) 

where a
G  is the eigenstate vector of Hη that is expressed as 

 η η η= +H T U  (5) 

with the kinetic energy matrix given as  
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and the potential energy matrix given as  
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WFs near the boundary in the single-element domain is 
assumed small and the surface integral vanishes. In multi-
element cases, the surface integral in each element is coupled 
with the surrounding elements, which is presented below.   

In the previous quantum POD model [1], decomposition 
was performed on WF data in each QS.  In order to extend 
the QSs across multi-elements in the QEM, a global approach 
for all QSs is proposed. More specifically, WFs in all the 
selected QSs subjected to Ns different applied electric fields 
are collected numerically from the Schrödinger equation.  
Using these Ns sets of WF data in (1), Ns sets of POD 
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eigenvalues and eigenmodes are generated.  The coefficients 
in (6) and (7) are then evaluated and used to solve Ԧܽ in (4). 

B. Quantum Element Model 

For a large structure that are partitioned into multiple 
elements, each element is projected to POD space using (1) 
represented by its POD modes. The QEM constructs the large 
structure using these elements and then projects the quantum 
eigenvalue problem of the large multi-element structure onto 
a POD space described by multiple sets of POD modes.  To 
arrive at an equation for the eigenvector Ԧܽ  of the multi-
element structure, (3) is modified to project the Schrödinger 
equation along the ith mode of the pth element as 

 
 (8) 
where Nel is the total number of elements in the domain, µ is 
the penalty constant defined as Nµ /dr with dr as the local 
numerical mesh size, and ∆(∗)p,q and ¢∗²p,q are the difference 
and average in the surface integral, respectively, across the 
interface between the pth and qth elements.  In (8), the 
interior penalty discontinuous Galerkin method [5],[6] is 
applied at the surfaces to enforce the interface continuity.  For 
the pth element projected along its ith mode, (8) can be 
rewritten as 

 
(9) 

where Mp and Mq are the selected numbers of modes in the 
pth and qth elements, the interior kinetic and potential energy 
matrices are given in (6) and (7), the diagonal boundary 
kinetic energy matrix is given as 

,
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and the off-diagonal boundary kinetic energy matrix is  
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A multi-element POD Hamiltonian matrix equation for the 
Nel-element domain can be derived from (9),  

,(12)

 
where the diagonal block matrix Hp for the pth element is  
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and the off-diagonal block matrix Hpq is  
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With Ԧܽ	solved from (12) for p = 1 to Nel, the WF in each state 
for the whole structure can then be constructed by combining 
WFs in space based on (2) over Nel elements. If the pth and 
qth elements do not neighbor each other, surface integrals in 
(8) vanish; Bp,pq,ij = Bpq,ij = 0 and Hpq,ij = 0. With a large number 
of elements, most of matrix entries in (12) are zeros. The 
block matrices in (12) can be pre-evaluated from the integrals 
of ηp,i and ∇ηp,i. The matrices and modes are then stored in a 
library for simulation/design of large quantum structures. 

 

 

III. DEMONSTRATION OF THE QEM 
Two QW structures given in Fig. 1 are used to collect WF 

data over 6 QSs in order to generate POD modes for Elements 
A, B, C, SC and CS, as labeled in the band diagrams. 15 
electric fields from -24 to 24 kV/cm are applied to the 
structure in Fig. 1(a) and from -30 to 30 kV/cm to the one in 
Fig. 1(b). Simulations with such setups allow each projected 
element to experience different boundary conditions (BCs) 

 
Fig. 1. Structures for  generation of POD modes for each of Elements A, 
B, C, SC and CS. The slope of each band indicate the maximum electric 
field in the simultions for the data collection. 

  
Fig. 2.  (a) LS errors of WFs in QSs 1-6 derived from the 3-element POD 
simulations of the SB-C-AS structure at -18kV/cm.  (b) The error of 
predicted eigenenergy with an inset showing the first 6 QS energies in the 
energy band at -18 kV/cm. 
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induced by the adjacent elements due to electric field 
variations. These projected POD elements are applied to 
construct 2 multi-element structures to validate the QEM 
against detailed numerical solutions of the Schrödinger 
equation.  The test QW structures include a 3-element 
structure with Elements SB, C and AS and a 7-element 
structure with Elements SC, B, A, B, C, A and CS.  

Theoretically, the training described above allows the 
generated POD modes of each element to predict WFs with a 
high accuracy only if the element is neighbored by those 
encountered during the training. However, most of the 
elements in the test QW structures are neighbored by those 
not encountered in the training. As will be seen below, the 
generated POD modes appear to be more robust than 
expected.  In Fig. 1(b), 2 possible sets of POD modes can be 
generated for Element C. The POD modes for Element C on 
the left are used in this study.   

 
Using the projected POD elements, 3-element POD 

simulation of the SB-C-AS structure with an equal number of 
modes in each element and Nµ = 20 is performed.  Compared 
to numerical simulation of the Schrödinger equation, errors of 
WFs and POD eigenergies are illustrated in Fig. 2, and its WFs 
in QSs 2 and 5 are included in Fig. 3.  In general, a small error 
of WF (near or below 2%) in each state can be reach with 2 or 
3 modes for each element except for QSs 5 and 6 that require 
more modes to minimize the large discontinuities at interfaces 
between elements. With a small number of modes the 
discontinuity is considerably smaller in QS-2 than in QS-5.  
The least square (LS) error in QS-2 is thus much smaller and 
its error drops from 2% to  0.52% when the discontinuity near 
58nm shown in the inset of Fig.3 (a) is successfully minimized 
with 5 modes.  On the other hand, the large discontinuities in 
QS-5 are gradually smoothed while the number of modes 
increase from 4 to 6, as seen in the insets of Fig. 3(b).  The LS 
error of the QS-5 WF in Fig. 2(a) thus gradually reduces with 
4 to 6 modes, and suddenly drops from 2% to an error less 
than 0.1% with 7th and 8th modes included.  

For the 7-element structure, simulation at an applied 
voltage of 0.25V across the 166nm-long QW structure 
(electric field ≈ 15kV/cm) is performed to demonstrate 
effectiveness of the QEM.  LS errors of the WFs in the first 14 
QSs are displayed in Figs. 4(a) and 4(b). The band diagram, 
the first 14 eigenenergies and the errors of these eigenenergies 
are displayed in the insets. Some predicted WFs are illustrated 
in Figs. 3(a)-3(d), compared to numerical solution from the 
Schrödinger equation. 

 
POD prediction of the QS energy is very accurate, as seen 

in the inset of Fig. 4(b), with an error less than 0.05% (< 
0.1meV) for all QSs except for QS 13 whose error is 0.6% (< 
1meV).  Results reveal that the predicted WFs in most of states 
are able to reach a good accuracy with just 3 to 6 modes and 
the errors mostly are induced by the interface discontinuity. 
Once the discontinuity is suppressed using more modes, high 
accuracy (with an error far below 1%) can be achieved. For 
example, when the discontinuity in QS 1 is minimized with 5 
modes (see Fig. 5(a)), a sudden drop of its error to 0.6% is 
found in Fig. 4(a).  Except for QS 13, this is also observed in 
other states; some need 3 to 6 modes to minimize the 
discontinuity (QSs 1-7, 9 and 11) but some need 10 or 11 
modes (QSs 8 and 10).  Except for QSs 13 and 14, the error 
far below 1% can be achieved if enough modes are included. 
The error of the QS-14 WF stays near 1% with 7 or more 
modes. Unlike the other states, QS 13 appears to be an 
unbound state, which may not be accounted for thoroughly in 
the generated POD modes. As seen in Fig. 5(d), the predicted 
QS-13 WF is not able to reach a high accuracy and a minimum 
error of 7.2% is achieved with 4 modes. Fig. 4(b) shows that 
its error actually increases slowly as more modes are added. 

The demonstrations have shown that the QEM offers a 
very accurate approach for the well-bounded WFs in the 2 test 
structures.  The POD modes appear to be more intelligent than 
expected in the multi-element simulation.  The POD modes 
are able to offer very accurate prediction even when they 
experience elements that were not included in the training 
process. However, larger errors are observed for the 

  
Fig. 3 Energy band diagram and WFs in QSs 2 and 5 of the 3-element 
structure at  -18 kV/cm with a different numbers of modes. The insets show 
the interface discontinuities influenced by the number of modes. 

 
Fig. 4. LS errors of WFs in (a) QSs 1-7 and (b) QSs 8-14 derived from the 
7-element POD simulation of the SC-B-A-B-C-A-CS structure at -15 
kV/cm.  The insets display the predicted 14 QS energies in the energy band 
diagram in (a) and the error of the predicted eigenenergy in each QS in (b).

79



unbounded WFs perhaps due to incomplete data of the 
unbounded WFs provided in the training process. 

 

IV. CONCLUSIONS 
The QEM proposed in this work combines the POD 

quantum model [1] with the domain decomposition method to 
offer an efficient approach for simulation of large domain 
structures for quantum eigenvalue problems. The approach 
partitions a large domain into smaller elements, each of which 
is projected to a POD functional space represented by a set of 
POD modes. The large quantum structure is then constructed 
using the projected POD elements. The developed QEM has 
been demonstrated in 2 QW structures, including a 3-element 

structure with 6 QWs and a 7-element structure with 14 QWs. 
With the projected multi-element QW structure onto a POD 
space represented by the several sets of POD modes, the QEM 
is able to predict well-bounded WFs and QS energies with 
high accuracy with a small number of DoF.  

This study presents the first application of the QEM. The 
developed approach will be useful for simulations/design of 
nanostructures or materials that require solution of the 
Schrödinger equation or Schrödinger-like equation. It is 
particularly useful for quantum structures with a high degree 
of geometrical repetition, including periodic lattice structures 
in materials. For simulation of a periodic structure, the general 
practice is to simulate a small basic element with periodic 
BCs, which offers a feasible computational time. In reality, 
there are always desired or undesired localized imperfections 
and/or non-uniformity in crystals or nanostructure in which 
periodic BCs cannot be used. To understand these types of 
structures, computationally intensive simulation of a large 
domain with a large number of basic elements, together with 
imperfections  and/or  nonuniformity,  is  needed.  With  the 
novel concept of the QEM, POD modes for a collection of 
elements, including imperfection and/or nonuniformity, can 
be generated first. The QEM would be able to offer accurate 
simulation of a large domain structure, constructed using these 
POD elements, to account for realistic BCs and nonuniformity 
at a reasonable computational time.  
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Fig. 5. Energy band diagram and WFs in QSs 1, 3, 8 and 13 of the 7-element 
structure at -15kV/cm derived from the QEM with a different numbers of 
modes. The insets show the interface discontinuities influenced by the 
number of modes. 
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