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Abstract—Density functional theory based simulation tech-

niques enable thorough investigation of the operational charac-

teristics of nanoscale devices regardless of their configurational

complexity. However, this flexibility comes with considerable

computational cost. In this work, we present a hybrid mode-

space/real-space scheme that utilizes a mode-space basis to

represent periodic contacts while maintaining the real-space

representation of the central device region. Reducing the size

of the contact blocks via mode-space approximation speeds up

the calculation of the open boundary conditions and reduces the

overall size of the Hamiltonian and overlap matrices, which leads

to significant improvements in the computational efficiency of

simulations. Keeping the real-space representation of the device

blocks preserves the versatility and accuracy of the ab-initio
approach. The merits of the proposed method are demonstrated

with the simulation of an amorphous device with metallic

contacts.

I. INTRODUCTION

Following the continuous decrease of the device dimen-
sions, atomistic quantum mechanical simulation approaches
have become essential to accurately predict the performance
of nanoscale components. Complex material stacks, metal-
lic contacts, and amorphous layers further call for an ab-
initio treatment of their electronic properties. Coupling density
functional theory (DFT) with the Non-equilibrium Green’s
Function (NEGF) formalism [1,2] meets this requirement.
Consequently, DFT+NEGF has established itself as a reference
to shed light on the behavior of nano-devices. However, it is
typically limited to small atomic systems because of its heavy
computational burden. This issue can be addressed by reducing
the dimensionality of the real-space (RS) Hamiltonian matrix.
Among the techniques proposed to do so, the so-called mode-
space (MS) method [3,4] stands out. The MS transformation
uses a reduced basis set to accurately reproduce the band
structure of a periodic cell within a restricted energy interval
only. As such, it does not lend itself to structures made
of non-repeatable unit cells, which is true for most realistic
components featuring interfaces and amorphous phases. This
is the case, for example, of conductive bridging random
access memories (CBRAMs), where an amorphous oxide is
surrounded by two electrodes, as illustrated in Fig. 1(a) [5].

Here, we propose a hybrid MS/RS scheme that decouples
the contact extensions, composed of periodic cells, from the
central oxide region with random atomic placement. While the
former parts are converted to MS, the latter remains expressed
in RS. This approach offers two key advantages over pure RS
simulations. By reducing the size of the contact blocks within
the Hamiltonian matrix H , we significantly decrease the time

to calculate the open boundary conditions (OBCs) and to solve
the NEGF equations. At the same time, the memory required
to store H drastically goes down.

Beside this innovation, we also successfully apply an MS
transformation to metallic electrodes, fully capturing their
band structure and accurately calculating the ballistic current
flowing through the resulting device.

II. APPROACH

The MS transformation is used to precisely reproduce the
RS band structure within the energy window of interest. This
transformation usually introduces unphysical energy states that
need to be removed. The contact RS-to-MS transformation
matrix U can be obtained and refined using the method
of Refs. [3,4] with a few modifications to process large
metallic blocks. First, an initial guess for U is created based
on the eigenvectors of the contact unit cell. Previous works
disregarded interactions beyond nearest neighbors [4], which
is acceptable for semiconductors. Metals however, usually fea-
ture delocalized electrons resulting in long range connections
that cannot be ignored without loss of accuracy. To account for
these, the following adaptations were developed. In a system
periodic along the x-axis, the E-k relation is given by

Hkx kx = E(kx)Skx kx , (1)

where Hkx and Skx are the kx-dependent Hamiltonian and
overlap matrices, respectively, E(kx) the energy at kx, and
 kx the corresponding wave function. For unit cells interacting
with NN neighbors along the ±x-direction Hkx is obtained
according to

Hkx = H0 +
NNX
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where Hn connects one periodic unit cell of width �x at xi

to another one at xi + n�x, as illustrated in Fig. 1(b). Note
that Skx has the same structure as Hkx . Based on Hkx and
Skx the initial guess is calculated according to [4].

Once U is obtained, it needs to be iteratively refined to
eliminate unphysical energy states. The elimination of these
energies is achieved by iteratively adding additional normal-
ized basis vectors in the form of ⌅ ·C to U . ⌅ is a trial basis
and C the vector that minimizes the following expression:
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where q and z are a set of trial kx and energies, respectively, A
and B are matrices defined as in [4] and depending on U , Hq ,
Sq , and ⌅. The ability of C to effectively remove unphysical
bands strongly depends on the choice of ⌅. Previous works
used the commutator [S�1

kx1
Hkx1

, S
�1
kx2

Hkx2
], with kx1 = 0

and kx2 = ⇡. We found a better performance of the removal
procedure using the kx with the largest number of unphysical
energies, in our case kx1,x2 = ±⇡/5 such that

⌅ = (1� UU
†)[S�1

k=⇡/5Hk=⇡/5, S
�1
k=�⇡/5Hk=�⇡/5]U. (4)

Finding the global minimum of Eq. (3) is a challenging
problem as the function has many local minima. Depending on
the initial guess, an optimizer not always finds a vector C that
removes an unphysical band from the MS band structure. To
remedy this shortcoming, we applied multiple initial guesses
and kept the result with the lowest value of F(C). The rows
of <{U} proved to be the best initial guesses for C.

Convergence of the optimization process was improved
using the analytical first derivative:
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(5)

which is a vector of the same length as C. Note that A and B

are assumed to be symmetric without loss of generality and
the scalar factors of Eq. (3) are absorbed into A.

The transformation of Hn (Sn) from RS to MS requires
to project each contact block onto the created MS basis. The
RS!MS coupling is achieved by partial, one-sided projection
of the RS block onto MS. The MS blocks eHn and hybrid
blocks Hn are then defined as

eHn = U
†
HnU, Hn,RM = U

†
Hn or Hn,MR = HnU. (6)

The Hn,RM/MR matrices are the hybrid blocks at the RS-MS
interface. Eq. (6) is only applied to the contacts, not to the
central oxide and the metallic interface layers attached to it.

III. RESULTS

As benchmark example, a CBRAM cell made of 3870
atoms, with two Cu contacts separated by amorphous silicon
dioxide (a-SiO2) is considered [6]. The H and S matrices were
computed from DFT with CP2K [7] using double-zeta valence
(DZVP) basis sets, and their contact extensions converted into
MS. In RS each Cu unit cell is made of 240 atoms with 25
orbitals per atom summing up to 6000 orbitals per block. The
RS!MS transformation reduced the original block size to 692
(11.5% of the original value), as listed in Fig. 2(a). The success
of the transformation is illustrated with the RS and MS contact
band structures in Fig. 2(b). The MS band structure is shown
both before and after the refinement procedure, in the left and
right half respectively. After refinement, the RS and MS results
almost perfectly agree with a maximum error of 0.047 meV.
Moreover, MS does not exhibit spurious states anymore within
the energy interval of interest.

The sparsity pattern of the device Hamiltonian matrices
before and after Eq. (6) are plotted in Fig. 3(a-b) for a subset of
the CBRAM in Fig. 1(a) (left contact and Cu/a-SiO2 interface).
Five Cu contact blocks are converted to MS, while one Cu
block at the interface and the a-SiO2 remain in RS. It can be
observed that the off-diagonal blocks coupling the MS to RS
domains change shape and become thin rectangles.

To validate our approach, H and S were passed to our
in-house quantum transport solver [8]. The energy-resolved
transmission and low field IV-curve through the investigated
cell, calculated with the RS and MS/RS matrices, are reported
in Figs. 3(c) and 4(a): the MS/RS transmission overlaps almost
perfectly with the RS one, and the IVs agree very well,
confirming the strength and validity of the hybrid scheme.

For improved simulation speed, the metal blocks at the
interface can also be converted into MS at the cost of accuracy.
The relative error of the IVs calculated from hybrid matrices
with zero and one RS metal blocks is shown in Fig. 4(b). With
a single Cu block in RS representation the current is within
1% of the original value. Transforming all electrode blocks to
MS, however, causes an underestimation of the current by up
to 20%. It is apparent that one RS block at the interface is
required to capture all necessary interactions.

The computational efficiency of the proposed method was
also tested on the Piz Daint supercomputer at CSCS by mea-
suring the time to calculate the OBCs and NEGF equations and
the total time needed per energy point. Results are presented
in Fig. 5. The evaluation of the OBCs on CPUs could be
accelerated by a factor of 55, irrespective of the number of RS
blocks at the interface. Solving the NEGF system on GPUs is
accelerated by a factor 40 (65) for one (zero) RS block, for
an overall speed up of 20 (40) per energy point. The reduced
memory consumption helped decrease the required number of
nodes per energy point from 20 with only RS blocks to 4 with
the hybrid approach. Thus, the total cost is lowered by a factor
of at least 20 (speed up) x 5 (node reduction) = 100.

As a result of these improvements, at a fixed computational
cost, the change in the resistance state of a CBRAM cell can
be studied at more steps during the formation of filaments
(see Fig. 6), as same MS transformation can be applied to the
contact region of each case.

IV. CONCLUSION

We have developed a method that combines real-space
and mode-space representations of non-homogeneous device
structures, demonstrating both excellent physical accuracy and
enhanced computational efficiency. By creating one transfor-
mation matrix U , we will be able to more rapidly simulate
electron transport through dynamically evolving structures like
CBRAM cells with different amorphous oxide layers and
nano-filament configurations, but (almost) identical contacts.
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(a) 3D CBRAM Structure
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(b) Block NB-diagonal Pattern of H

Fig. 1. (a) Atomistic Cu/a-SiO2/Cu CBRAM cell structure used in this work to benchmark the proposed hybrid mode-space/real-space approach. It is composed
of 3870 atoms. Grey spheres represent Cu atoms (25 orbitals per atom), the orange ones Si and O (both 13 orbitals per atom). The Cu contacts are in fact
longer than shown here. The red rectangles mark the contact blocks, while the green ones refer to the interface blocks. (b) Typical block NB-diagonal pattern
of the real-space Hamiltonian matrix H corresponding to the structure in (a). Each block represents a unit cell. Due to long-range interactions, NB=5 for
NN=2. The mode-space Hamiltonian has the same pattern with much smaller blocks.

RS block size: 6000
Initial guess size: 538
Refinement iterations: 154
MS block size: 692
Size reduction: 88.5%
Energy window: 2 eV
Number of k-points: 128
Max. error band structure: 0.047 meV

(a) Mode-Space Transformation
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(b) Cu Contact Band Structure

Fig. 2. (a) Table summarizing the real-space to mode-space transformation parameters. For an energy window of 2 eV around the Fermi level, 128 k-points
are necessary to sample the Cu contact band structure and obtain accurate results, leading to a reduction of the block size by 88.5%. The largest error in the
MS band structure is well below 10-4 eV. (b) Band structure of the Cu contact. Large red dots refer to the real-space. On the left branch the black crosses
correspond to the MS band structure before refinement. The right-hand-side shows with small black dots the final mode-space results. The unphysical bands
have been removed and all spurious states have been successfully eliminated.
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(b) Hybrid Hamiltonian
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(c) Transmission profile through the device

Fig. 3. (a) Sparsity pattern of the real-space, penta-diagonal Hamiltonian matrix (left contact and Cu/a-SiO2 interface). Black blocks correspond to the
different Cu contact and a-SiO2 (last block, bottom-right) unit cells, red (blue) blocks to their (second) nearest-neighbor connections. (b) Same as (a) after
transformation into mode-space. Note the rectangular shape of the RS!MS coupling blocks and the significant size reduction from NRS = 390423 to
NMS = 120883. (c) Transmission function through the structure in Fig. 1(a) as a function of energy around the Fermi energy (0 eV). Real-space (solid black
line) and mode-space (dashed lines) are shown. The red (blue) dashed line corresponds to hybrid Hamiltonian with one (zero) RS metal block. While the red
and black curve perfectly agree, the blue one is slightly off.
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(a) Low-field IV characteristics of the device
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(b) Relative error with respect to the RS IV curve

Fig. 4. (a) Low-field IV curves for the same simulations as in Fig. 3(c). The RS and MS curves agree given that at least one interface block remains in RS.
(b) Relative error of the MS IVs shown in (a) with respect to RS. With one RS metal block the relative error of the current remains below 1%. With all metal
blocks transformed to MS, however, the current is underestimated by almost 20% at a bias of 0.2 V.

RS MS/RS Hybrid 1 RS block Gain vs RS MS/RS Hybrid 0 RS blocks Gain vs RS
Matrix size: 78’846 25’766 3.1 15’150 5.2
Non-zero elements: 673.9e6 132.0e6 5.1 47.5e6 14.2
Time OBC [s]: 308.5 5.3 57.8 5.8 53.2
Time linear system [s]: 273.9 6.4 42.5 4.1 66.8
Total time [s]: 336.0 16.5 20.4 8.2 41.0
Nodes: 20 4 5 2 10
Cost [time*nodes]: 6720 66 101.8 16.2 414.8

Fig. 5. Computational benchmark: Table summarizing the numerical problem size and computing times obtained for both the real-space and mode-space
Hamiltonians on the Piz Daint supercomputer at CSCS (http://www.cscs.ch). Each node of this machine features 12 Intel Haswell cores (64 GB RAM) and
1 Pascal 100 GPU (16 GB). All benchmarks were run on the same number of cores (20) and GPUs (4), but different number of nodes, 20 for RS and 4 (2)
for MS/RS with one (zero) RS blocks. Significant speed up factors of 20 (40) and reductions of memory footprint (using 4 (2) instead of 20 nodes) were
achieved by applying the proposed hybrid MS/RS scheme.

Fig. 6. Different CBRAM cells with the same cross section dimensions, but different nano-filament states. In the left-most structure, the central oxide is
almost free of Cu atoms, while the top and bottom contacts are short-circuited by a filament in the right-most one. As the electrodes remain identical for all
configurations, the same mode-space transformation can be applied to all of them to reduce their block size.
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