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Abstract—A deep neural network is trained to learn the
electrostatic potential of the semiconductor device. In order to
demonstrate its feasibility, pn diodes are considered. Various
pn diodes with different doping densities are generated and
the numerical solutions are calculated. The resultant electro-
static potential profiles are used in the training phase. Our
numerical results clearly demonstrate that the trained neural
network can provide the initial electrostatic potential reasonably
well. Since the initial electrostatic potential is improved, the
Newton-Raphson loop for the nonlinear Poisson equation can
be converged within a smaller number of iterations.
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I. INTRODUCTION

Recently, a deep neural network has been widely applied
to many application areas such as image analysis, natural lan-
guage processing, and expert systems. For example, in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)
2017, 29 of 38 competing teams had accuracy greater than 95
%. Inspired by its superior performance demonstrated in those
applications, great research efforts have been made to apply
the deep neural network to other unexplored fields.

As far as the semiconductor industry is involved, a deep
neural network has been mainly used as a tool for the design-
technology co-optimization (DTCO) [1], [2]. In [2], the neural
network is applied to the yield estimation. Basically, the neural
network is considered as just a component of an optimizer
for predicting a better technology option, based upon the
pre-existing results from the semiconductor device simulator.
Therefore, in those works, the semiconductor device simulator
itself is not modified. It is treated as a given building block
of the technology development.

Except for the DTCO application discussed so far, it is
difficult to find a report on application of the deep neural
network to the semiconductor device simulation. In [3], the
machine learning technique has been used in predicting the
Hamiltonian operators for the density-functional theory. How-
ever, the density-function theory is quite different from the
conventional device simulation based on the drift-diffusion
equation. Also, the adopted machine learning technique is not
the deep neural network.

In the present authors’ opinion, the deep neural network can
be employed in the semiconductor device simulation field in
an alternative manner. To be specific, it can be used to solve
a set of nonlinear equations more efficiently. For example, it
is expected that a trained deep neural network can be used to
provide a good initial guess for the electrostatic potential. With
a better initial solution, the number of the Newton-Raphson
iterations required to solve the nonlinear Poisson equation can
be reduced.

In this preliminary report, a deep neural network which can
predict the electrostatic potential profiles of pn diodes is intro-
duced. The structure of this extended abstract is as follows: In
Section II, the neural network proposed in this work is briefly
introduced. The numerical results for pn diodes at equilibrium
are shown in Section III. It is clearly demonstrated that the
number of the Newton-Raphson iterations can be considerably
reduced by adopting the neural network. Moreover, a brief
discussion on the future research direction is provided. Finally,
the conclusion is made in Section IV.

II. NEURAL NETWORK

The conceptual diagram for the proposed neural network
is shown in Fig. 1. First, the neural network is trained as
shown in Fig. 1(a). The training data set contains a list of the
device specifications and the resultant electrostatic potential
profiles. In this preliminary work, the device specifications
are simplified as two scalar numbers, which represent the
doping densities of a pn diode. It is prepared before starting
the training phase. The supervised learning [4] is performed
with the backpropagation algorithm. In addition to the training
data set, the validation data set is prepared. Since the neural
network is not trained with the validation data set, it is used
to check the validity of the trained neural network. After
trained with the predefined training data set, the neural network
can be used to generate the initial potential profile in the
semiconductor device as shown in Fig. 1(b).

The configuration of the proposed neural network is shown
in Fig. 2. The doping densities of two regions (p-type and
n-type regions) are used as the input parameters. Our goal
is to generate the electrostatic potential profile as results of
the last, output layer. For that purpose, two hidden layers
have been introduced. Each hidden layer is fully connected
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Fig. 1. Conceptual diagram for the proposed neural network. (a) Training
and (b) inference phases.

(b) Inference

with its neighboring layers. The first layer consists of 512
artificial neurons and uses the rectified linear unit (ReLU) as
the activation function,

ReLU(z) = maz(0, z). €))

The dropout parameter is set to be 0.2. The second layer has
the same structure with the first one, except for the reduced
number of artificial neurons, 256. The last, output layer has
121 artificial neurons. No activation function is used in the
output layer.

It is noted that the layer structure shown in Fig. 2 has
been obtained by performing several numerical experiments
with various layer structures. Depending on the problem,
other layer structures may exhibit better results. Unfortunately,
we have not found a general rule to build the best layer
structure without intensive numerical experiments. It would be
an interesting research topic to establish an efficient method
to find a sufficiently good layer structure.

As far as the actual implementation is concerned, we have
used the sequential model among the Keras layer models [5].
We use the RMSprop (with the learning rate of 0.00005) as
the optimizer and the mean square error as the loss function.
The number of epochs is 1000.

III. NUMERICAL RESULTS

One-dimensional, abrupt pn diodes at equilibrium are con-
sidered. The material is silicon and the temperature is 300 K.
The doping density of each region varies from 1 x 105 cm~3
to 1.3 x 10'7 cm™3. The p-type and n-type doping densities
vary independently. By adopting the depletion approximation,
the depletion width varies from 0.13 pm (both regions with
1.3 x 10' cm™3) to 1.24 um (both regions with 1 x 101°
cm~3). A sufficiently long structure, whose length is 3 um,
is used for all the cases to ensure that the entire depletion
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Fig. 2. Layer structure of the proposed neural network. Two hidden layers are
introduced. Each hidden layer is fully connected with its neighboring layers.

region is included in the simulation domain. The real space is
discretized with a uniform grid, whose spacing is 25 nm. The
number of nodes in the output layer is matched to that of the
grid points.

The difference between the predicted electrostatic potential
and the numerical simulation result is regarded as an error.
The numerical solution of the nonlinear Poisson equation is
obtained by using our in-house tool and the intrinsic carrier
density of Si at 300 K is set to be 1 x 10! cm~3. In Fig.
3, the mean absolute error of the electrostatic potential is
shown as a function of the learning epoch. It is estimated
after each learning epoch is finished. Throughout the training
phase, the error is reduced for both the training data set and the
validation data set. At the initial phase, the mean absolute error
is rapidly decreasing with the epoch number. However, after
a few hundred epochs, the error does not decrease any more.
With the given layer structure shown in Fig. 2, it seems that
the neural network is sufficiently trained after a few hundred
epochs.

After the training phase is finished, the neural network
can be used to predict the electrostatic potential profile.
Fig. 4 shows the electrostatic potential profile generated by
the trained neural network. Various structures with different
doping densities are tested. The test structures shown in Fig.
4 are not included in the original training set. The doping
densities are randomly selected in a range of (1 x 103
cm~3, 1.3 x 1017 cm’3). Nevertheless, the generated profile
agrees with the numerical simulation result reasonably well
for each test structure. Boundary values at both ends are well
reproduced and the depletion layers are accurately predicted.

Of course, it should be noted that the profile generated
by the deep neural network cannot be perfectly matched to
the numerical simulation result. In Fig. 4, slight differences
between the symbols (the predicted profiles) and the solid lines
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Fig. 3. Training and validation errors as functions of the learning epoch. The
errors are rapidly decreasing with the epoch number.
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Fig. 4. Electrostatic potential profile generated by the trained neural network.
Various structures with different doping densities are tested. The n-type region
is located at the right side. For comparison, the numerical solutions are also
drawn as solid lines.

(the numerical solutions) are visible. Therefore, the predicted
electrostatic profile cannot be treated as the converged solu-
tion.

In order to understand the internal procedure for the neural
network to predict the electrostatic potential profile, results of
three layers are shown in Fig. 5. Two symmetric pn diodes
are selected as representative examples. One has a relatively
high doping density of 1.3 x 107 cm™ and the other has
a low doping density of 1 x 10 cm™3. It can be observed
that the high doping concentration excites the nodes strongly.
Although it is difficult to interpret the physical meaning of
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Fig. 5. Results of three layers. (a) The first hidden layer, (b) the second
hidden layer, and (c) the output layer for two different symmetric pn diodes.

node outputs in the first and second layers (Figs. 5(a) and
5(b)), the output layer gives appropriate potential profiles for
both structures as shown in Fig. 5(c). The sensitivity analysis
on the trained neural network would be an interesting research
topic.

Up to now, it has been demonstrated that the trained neural
network can be used to guess the electrostatic potential profile
at equilibrium. The predicted electrostatic potential can be
used as the initial solution for the nonlinear Poisson equation.
Since the initial guess for the electrostatic potential is quite
similar to the numerical solution, it is expected that the
convergence behavior can be improved significantly.

Fig. 6 shows the convergence behavior of the nonlinear Pois-
son equation. Several structures with randomly selected doping
densities are simulated. The maximum potential correction in
the first Newton-Raphson iteration is much smaller than 0.1 V.
Since the initial error is small, the converged solution can be
obtained quickly. For example, in every case simulated in Fig.
6, the maximum potential correction in the fourth Newton-
Raphson iteration is smaller than 10~5 V. Compared with
the conventional method assuming the local charge balance,
the convergence acceleration by the deep neural network is
obvious. In order to obtain the maximum potential correction
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Fig. 6. Convergence behaviour of the equilibrium nonlinear Poisson equation.
Two methods for the initial potential profiles (the local charge balance and
the generated value by the neural network) are compared for several test
structures.

smaller than 10~° V, six or seven Newton-Raphson iterations
are needed when the local charge balance approximation is
adopted. Therefore, at least two or three iterations can be
skipped without sacrificing the numerical accuracy. Since the
neural network is trained only in the training phase, the
computational burden in the inference phase is negligible.

It is noted that skipping two or three Newton-Raphson
iterations for the nonlinear Poisson equation does not save the
computation time significantly. However, the present approach
has great potential for realistic situations. Although we have
considered only the equilibrium case in this feasibility study, it
can be extended to non-equilibrium cases [6]. By training the
deep neural network with the simulated electrostatic potential
profiles even at non-equilibrium cases, the neural network
can provide an appropriate potential profile for a biased pn
diode. With the predicted potential profile under the given bias
point, the numerical simulation can be performed directly. On
the other hand, in the conventional device simulation, several
intermediate bias points should be simulated to cope with the
system nonlinearity.
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Therefore, the speed-up ratio for the Newton-Raphson
method can be expressed as follows:

Conv Conv
Bias X NNewton 2)
NNN ) (
Newton

SpeedUp =~

where Ngfgs” is the number of bias points to be simulated
and N§o™  is the average number of the Newton-Raphson
iterations per bias point. These quantities are for the conven-
tional bias ramping scheme. On the other hand, NYZ . s the
number of the Newton-Raphson iterations when the predicted
profile is used as the initial guess. Two numbers, NG and
N¥ guton, may be comparable. In such a case, the simulation
speed-up is mainly achieved by skipping intermediate bias
points. Further results will be reported elsewhere [6].

IV. CONCLUSION

In conclusion, the deep neural network can generate the
initial electrostatic potential profile reasonably well. Compared
with the local charge balance approximation, the number of
the Newton-Raphson iterations required to get the converged
solution is considerably reduced. It is expected that this work
can be expanded to non-equilibrium cases with additional
efforts.
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