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Abstract—A Python-based device simulator named Impulse
TCAD was developed. The simulator is built on top of a nonlinear
finite volume method (FVM) solver. To describe physical behavior
of non-standard materials, both device properties and their
dominant equations can be customized. The given FVM equations
are solved by the Newton method, where required derivatives of
the equations are derived automatically by using an automatic
differentiation technique. As a demonstration, a steady state
analysis of the negative capacitance field effect transistors with
ferroelectric materials is selected, where the coupled Poisson and
Devonshire equations are implemented in several different ways.

Keywords—TCAD, device simulation, automatic differentia-
tion, Python, negative capacitance

I. INTRODUCTION

Reducing the power consumption of semiconductor devices
is an urgent issue in both edge devices of the internet of things
and server machines in data centers. To overcome the physical
limitation inherent in conventional silicon devices, many re-
searchers are trying to utilize singular physical phenomena like
quantum tunneling and novel materials like ferroelectrics. On
the other hand, semiconductor device simulation has long been
a standard tool to realize the rigorous silicon roadmap [1]–[3].
Therefore, for the development of the next-generation semi-
conductor devices, non-standard physical models have to be
implemented in the device simulators. A new device simulator
named Impulse TCAD [4], [5] was thus developed to support
such studies on the new physical models. Impulse TCAD is
written mainly in the Python language, which is also used
to describe the run script to control the simulation pathway.
In Impulse TCAD, users can declare device properties that
characterize target materials, and define dominant equations
that describe their physical behaviors. It is even possible
to intervene in the iterative solver of the equations, which
helps several difficult cases to converge. Because all these
customizations are managed in the Python domain, a special
customization for a specific project can even be possible
from the run script, without modifying the main body of the
simulator. Modifications are also reflected instantly without
the complicated compile and link process, which accelerates
the development process of new models. In the following, the
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Fig. 1. Control volumes in FVM. Each material region is divided into control
volumes, which are designated by node points (A and Bi).

basic equations used in Impulse TCAD are introduced along
with the background mechanism, followed by a representative
example. Applying this to the negative capacitance field effect
transistors is also shown as a demonstration.

II. IMPULSE TCAD
A. Finite Volume Method

Impulse TCAD is a semiconductor device simulator based
on the finite volume method (FVM). Device structures are
represented in 3D unstructured meshes, on which the vertex-
centered non-linear FVM is implemented. To setup FVM, each
material region is divided into tiny control volumes (CV) as
shown in Fig. 1. Device properties in CV, such as electric
potential and electron density, are represented on “node” points
(A and Bi). Similarly, properties on the boundary surface
(or on the “edge”) between neighbouring CVs A and Bi

are dependent only on the properties of nodes A and Bi. In
Impulse TCAD, the FVM equations are set up on the node A
as

g =
X

i

f(A,Bi)Si + s(A)V = 0, (1)

Where f(A,Bi) is a flux term directing from Bi to A, s(A)
is a source term, Si is an area of the boundary surface, V
is a volume of the CV, and the summation is taken over all
neighbouring nodes. The conservation rule Eq. (1) is satisfied
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simultaneously over all CVs, by adjusting variable properties
v on each node. The Newton method is employed to calculate
the adjustment �v:

�g '
X

i

✓
@f

@vA
�vA +

@f

@vBi

�vBi

◆
Si +

@s

@vA
�vAV
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which is written collectively as (@G/@V )�V = �G. Here,
v and g are collected from all nodes to form vectors V and
G, respectively. The Jacobian @G/@V is a large and sparse
matrix, which is constructed from derivatives @f/@v and
@s/@v. The update �V at each Newton iteration is obtained
by solving the large linear equation.

In Impulse TCAD, users set up the FVM equations by
providing the flux term f(A,Bi) and the source term s(A)
symbolically. To illustrate, a setup of coupled Poisson and
drift-and-diffusion equations is shown below:

# Poisson
f Psi = eps * (Psi . j � Psi. i ) / dx d
s Psi = q * (ND.i � NA.i + Hole.i � Elec.i )

# Drift & Diffusion
E = abs(( Psi . j � Psi. i ) / dx d)
mu n = CaugheyThomas(E, T, mu n, beta n, Vsat0 n, A n, T0 n)
mu p = CaugheyThomas(E, T, mu p, beta p, Vsat0 p, A p, T0 p)
x = q / (kB*T) * (Psi . j � Psi. i )
f Elec = �mu n * kB*T / dx d * C Bernoulli( x, Elec.j , Elec . i )
f Hole = mu p * kB*T / dx d * C Bernoulli(�x, Hole.j, Hole. i )
s Elec = �q * ShockleyReadHall(Elec.i,Hole. i , ni , tau n , tau p)
s Hole = �s Elec

Eqn = ( [( f Psi , s Psi ) , ( f Elec , s Elec) , (f Hole, s Hole) ],
[Psi , Elec , Hole] )

Here, Psi, Elec, Hole, NA, and ND are the device properties for
the electric potential, electron density, hole density, acceptor
density, and donor density, respectively, where suffixes “. i”
and “. j” denote the values on the primary (A) and adjacent
(Bi) nodes, respectively. The property dx d gives the edge
length between A and Bi. Other symbols are defined elsewhere
as numerical constants. At the last line, the FVM equations are
defined as a list of (flux, src) terms, along with a list of variable
properties for which the equations have to be solved. As shown
in the listing, the flux and source terms are constructed by
using the device properties in a straightforward manner.

B. Automatic Differentiation
The given FVM equations are solved by the New-

ton method, where the automatic differentiation facility of
Theano [6] is used. The device properties listed above
are implemented as Theano symbols, and equations written
with them compose Theano expressions. Indeed, the func-
tions CaugheyThomas, C Bernoulli, and ShockleyReadHall return
Theano expressions for the mobility [7], the interpolated
electric current [8], and the generation-recombination rate [9],
respectively.

Under the hood, differential expressions of the FVM equa-
tions are derived with respect to the given variable properties.

C source codes are then generated to calculate both the equa-
tions and their derivatives numerically, which are compiled
and linked to build a module accessible from Python. The
equations are also analyzed to extract a list of incorporated
device properties. For example, [ Psi . i , Psi . j , dx d ] and
[ Elec . i, Hole. i, ND.i, NA.i ] are extracted from f Psi and
s Psi, respectively. Note that eps and q in these equations are
constants, which are embedded in the source codes directly.
The module is called repetitively to build G and its Jacobian,
where the required arguments are assembled according to the
property list. This Jacobian construction is parallelized by
MPI [10]–[14], as well as the direct solver for the linear
equation [15]–[19].

C. Comparison with other simulators

In our survey, PRISM [20], [21] and Genius [22] employ
an automatic differentiation scheme in the semiconductor
device simulation. PRISM is based on a FORTRAN package
IVPACK, where derivatives are automatically generated for
functions programmed with IVPACK function calls. Mobility
models and generation-recombination terms can be extended
easily with the IVPACK scheme, though details are not
available. Genius implements a C++ framework of automatic
differentiation, with which users can customize materials. In
Genius, dominant equations and associating physical models
are predefined in the simulator, and users can modify physical
parameters (such as electric permittivity), as well as the
functional form of the physical models (such as the band gap
narrowing model). To customize Genius, building a dynamic
library with a set of prescribed APIs is mandatory, though
rebuilding the whole simulator can be avoided.

In contrast to these simulators, the automatic differentiation
scheme is hidden from users in Impulse TCAD. Instead
of composing individual derivatives of physical models, the
automatic differentiation is used to derive the Jacobian of
the FVM equations (1) directly. This approach allows users
to customize dominant equations themselves, without the
hassles of defining auxiliary functions. The customizations are
also reflected instantly, without the complicated compile and
link process. These features are prerequisite to develop non-
standard physical models of new materials, as shown in the
next section.

III. APPLICATION TO FERROELECTRIC MATERIAL

This section demonstrates how Impulse TCAD helps the
development of new physical models by taking the negative ca-
pacitance field effect transistors (NC FET) as an example [4],
[23]–[26]. In the NC FET, ferroelectric materials like HfO2

are embedded in the gate stack. The device structure used in
the present study is shown in Fig. 2. To solve the steady states
of the device, the standard Poisson and drift-and-diffusion
equations are applied on materials other than HfO2.

The electric potential  of the HfO2 regions is solved by the
Poisson equation coupled with the Devonshire equation [27].
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Fig. 2. Device structure of the negative capacitance FET.
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Fig. 3. The polarization of a ferroelectric material as a function of the electric
field. The employed material parameters are shown in the inset. The calculated
steady states are plotted by red dots and crosses for Eq2 and Eq3, respectively.

The polarization of the ferroelectrics is described by the
Devonshire equation,

E = 2↵P + 4�P 3 + 6�P 5, (3)

where E = �r is an electric field, P is a polarization,
and ↵, �, � are constant parameters. The E-P relationship of
Eq. (3) is depicted in Fig. 3. The negative capacitance (NC)
state is plotted with a thick line, which is of our major interest.
The ferroelectric axis of HfO2 is taken to be perpendicular
to the channel (Y axis), and the polarizations parallel to the
channel are treated as normal dielectrics.

Assuming that there is no charge in the HfO2 regions, the
Poisson equation is written in the integrated form as

Z

S
(✏0E + P )dS = 0. (4)

Several approaches are possible to implement Eq. (4) in Im-
pulse TCAD. To start with, the device properties are declared
as follows:

1 Psi = NodeProp(”Psi”)
2 Pol = NodeProp(”Pol”)
3 Elf = NodeProp(”Elf”)
4 Pos = NodeVec(”Pos”)
5 dx d = EdgeProp(”dx d”)

Psi, Pol, and Elf are the scalar properties giving electric
potential, polarization, and electric field, respectively, while
Pos is the 3D vector property giving spatial location. An
edge property dx d gives an edge length between A and Bi.
Constant parameters eps0, eps, alpha, beta, and gamma are also
prepared elsewhere.

In the first approach, the polarization Pol is supplied as a
parameter:

6 E = � (Psi . i � Psi. j ) / dx d
7 Dir = (Pos. i � Pos.j) / dx d
8 Evec = E * Dir
9 Px = eps * Evec[0]

10 Py = (Pol . i + Pol . j ) / 2
11 Pz = eps * Evec[2]
12 P = Px*Dir[0] + Py*Dir[1] + Pz*Dir[2]
13 Eq1 = ([( eps0 * E + P, 0) ], [Psi ])

Before each Newton iteration, Pol is calculated from the
gradient of Psi, by solving Eq. (3) for the NC state. The
polarization vector (Px, Py, Pz) is calculated at the edge center,
which is projected on the edge to define the electric flux
density along the edge. In this approach, the dependence of Pol
on Psi is not reflected directly in the Newton method, which
causes severe difficulty in convergence. Note that the HfO2

regions of Fig. 2 consist from 1500 node points, and Eq. (4)
has to be satisfied on them simultaneously.

In the second approach, the ferroelectric polarization is
symbolically calculated in the equation:

14 Py2 = P of E(Evec[1])
15 P2 = Px*Dir[0] + Py2*Dir[1] + Pz*Dir[2]
16 Eq2 = ([(eps0 * E + P2, 0) ], [Psi ])

Here, P of E() is a Theano operator defined in Impulse TCAD,
which solves Eq. (3) to give P from E for the NC state.
As a result, @P/@ A and @P/@ Bi are incorporated in the
Jacobian, by way of the chain rule. This approach successfully
calculates the steady states of the NC devices [24], [25], with
the gate potential Vg varied at the step of 0.05 V. For the
converged states, the electric field and the polarization are
averaged over the upper HfO2 region, and are plotted in Fig. 3
using red dot symbols. When Vg is increased beyond 0.6 V,
some of the node points start to escape from the NC state,
where the simulation stops.

In the previous two approaches, the spontaneous polariza-
tion (SP) states of the ferroelectrics (thin lines in Fig. 3) is
ignored. In the third approach, the SP state is incorporated by
solving Eq. (3) coupled together with the Poisson equation:

17 Devonshire = 2*alpha*Pol. i + 4*beta*Pol. i**3 \
18 + 6*gamma*Pol.i**5 � Elf.i
19 Eq3 = ([(eps0*E + P, 0) , (0, Devonshire) ], [Psi , Pol ])

Both Psi and Pol are treated as variable node properties,
which are solved in a coupled manner. Similarly to Pol in
the first approach, the electric field Elf is prepared before
each Newton iteration and supplied as a parameter, so that the
dependence of Elf on Psi is ignored in the Newton method.
This approach is still convergent, however, because Elf is less
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sensitive to Vg than Pol. Note that the full Newton approach
is also possible for Elf [28], by constructing the electric field
from those E defined on the edges. Starting from an initial
condition tailored for the SP state, the simulation converges
with some intervention in the iterative process, which are
plotted in Fig. 3 using red cross symbols. The Newton method
did not converge for Vg lower than 0.9 V, probably because
the NC state becomes possible for some node points, causing
oscillation in the Newton iteration. Because both of the SP
and NC states can be described, this approach is employed in
the transient analysis [4], [26], where the transition between
the SP and NC states are simulated.

IV. CONCLUSION

A new semiconductor device simulator named Impulse
TCAD is introduced, which allows easy handling of non-
standard physical models. Both device properties and their
dominant equations can be customized dynamically, which
accelerates the development of simulation schemes for novel
devices. Auxiliary functions required to solve the equations
are generated automatically by using the automatic differen-
tiation technique. Usability of the simulator is demonstrated
by taking NC FET as an example, where the physical model
of ferroelectric materials is implemented in several different
ways on the same platform.

Impulse TCAD has several other features not mentioned in
the manuscript that makes the simulator more accessible. A set
of materials are predefined, where typical dominant equations
and boundary conditions are packaged. They can be used as
a starting point of the customization. Several utility functions
are also provided, with which users can set up simulations
according to prescriptions, export snapshots to files, import
device properties from the snapshot files, check consistency of
equations, and so on. The exported snapshots can be examined
by using the state-of-the-art viewers [29] directly without
conversion, which allows ready steering of simulations. With
these features, we hope Impulse TCAD will contribute to the
development of the next generation semiconductor devices.
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