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Abstract—Some classes of differential equations are amenable

to a numerical solution based on the Numerov process (NP),

whose accuracy can be up to two orders of magnitude superior

with respect to the standard finite-difference or box-integration

methods, with a negligible increase in the computational cost.

The paper shows that the equations describing charge transport

in solid-state devices can suitably be manipulated to make the

application of NP possible. Also, thanks to a specifically-tailored

algebraic solver, the 1D Poisson equation is fully decoupled from

the transport equation, this reducing the procedure to the solution

of a single non-linear equation. The example of an Ovonic

device is considered, used as selector in phase-change memory

applications.

Index Terms—Numerov Process, Transport equations

I. INTRODUCTION

A differential equation of the second order where the first
derivative of the unknown function z(x) is missing: �z00 =
Q(x) z + P (x), is amenable to a discretization scheme based
on the Numerov process (NP), whose accuracy is O(h4

), with
h the grid size, in contrast to O(h2

) of the standard methods
(details in [1] and references therein). Although the original
version of NP applies to a uniform grid, this constraint can be
relieved as shown below. Letting Q = 0, the above equation
yields the Poisson equation, with z = u the normalized electric
potential and P = q/(" kB T ) %, where % is the charge density;
if, instead, one lets P = 0, the time-independent Schrödinger
equation is found, with z = w the spatial part of the wave
function and Q = 2m (E � V )/~2, where E and V (x)
are the total and potential energy, respectively. Due to the
superior performance of NP with respect to the standard finite-
difference method, it is of interest to seek for extensions of NP
to other classes of equations; among these, those that model
charge transport in solid-state devices.

II. THE MODEL EQUATIONS

Referring to the semiclassical model for charge transport in
solids, a one-dimensional case with only one type of carriers,
e.g., electrons, is considered. This situation is typical, among
others, of devices like phase-change memories (e.g., [2] and
references therein); the form of the Poisson equation thus
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becomes u00
= u00

(n, nT ), with n, nT the concentrations of
electrons and empty traps, respectively. Combining the steady-
state continuity equation for the electrons, J 0

n = q U , with the
transport equation of the drift-diffusion form, Jn = q Dn (n0�
u0 n), yields n00�u0 n0�u00 n = U/Dn, where U = U(n, nT )

is the net-recombination rate and Dn = const the diffusion
coefficient of the electrons. In a decoupled solution scheme,
�u00

= q/(" kB T ) % = P (n, nT ) plays in the latter equation
the role of a coefficient known from the previous iteration.
Letting s = �(U/Dn) exp(�u/2), g = n exp(�u/2), the
equation is given a form suitable for the application of NP:

�g00 = c g + s , c = P/2� (u0
)
2/4 . (1)

Note that the transformation leading to (1) is not a re-
duction to the self-adjoint form, which would in fact read
[n0

exp(�u)]0 = (U/Dn�P n) exp(�u), nor an exponential
fitting like the one typically adopted for solving the semi-
conductor equations, which would read q Dn [n exp(�u)]0 =
Jn exp(�u) with Jn = const over the segment connecting
two nodes (the exponential-fitting scheme is also known as
Scharfetter-Gummel method [3]).
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Fig. 1. Error ✏ vs. the number of iterations, with V = 0.1 V applied bias.
The legend shows the number of nodes of each run.
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III. THE NUMEROV PROCESS

Given a uniform grid having N internal nodes with an
element size equal to h, application of NP to the Poisson
equation yields the algebraic system

�ui�1 + 2ui � ui+1 =
h2

12
(Pi�1 + 10Pi + Pi+1) , (2)

while its application to (1) yields the algebraic system

�
✓
1 +

h2

12
ci�1

◆
gi�1 +

✓
2� 10

h2

12
ci

◆
gi (3)

�
✓
1 +

h2

12
ci+1

◆
gi+1 =

h2

12
(si�1 + 10 si + si+1) .

The unknowns of (3) are the nodal values gi =

ni exp(�ui/2), whereas ci and si depend on the original un-
known n through P and U . If the nodal values of exp(�u/2)
are incorporated as they are into the coefficients of (3), the
matrix may become stiff; it is preferable to restore the original
unknown by multiplying both sides of (3) by exp(ui/2). The
new form of (3) thus obtained is more convenient because
the potential differences between neighboring nodes appear,
instead of the nodal potential alone. For instance, gi�1 is
replaced with ni�1 exp[(ui � ui�1)/2], and so on. Finally,
one must express u0 in the second relation of (1); using again
NP, one easily finds

u0
i =

ui+1 � ui�1

2h
+ h

Pi+1 � Pi�1

12
. (4)

When i = 2, . . . N � 1, (4) involves only the internal nodes;
when i = 1 or i = N , (4) involves one or the other boundary
condition (u0 and P0 = 0 or, respectively, uN+1 and PN+1 =

0); finally, when i = 0 or i = N+1, (4) involves the potential
and charge inside the contacts; as the latter are equipotential
and neutral, one finds u�1 = u0, P�1 = 0 and uN+2 = uN+1,
PN+2 = 0. By the same token one finds

g0i =
(6 + h2 ci+1) gi+1 � (6 + h2 ci�1) gi�1

12h
+

+ h
si+1 � si�1

12
. (5)

IV. FULLY DECOUPLING THE MODEL EQUATIONS

As the coefficients of (3) depend on the nodal values ui

of the electric potential, it is necessary to iterate between
the solution of (3) and that of the algebraic system deriving
from the Poisson equation. In general such solutions are
obtained by algebraic solvers that provide the nodal values in
a prescribed sequence; considering for instance the A = LU
decomposition, one obtains the ith nodal value of the potential
only after calculating it at nodes 1 through i�1 (or at nodes N
through i+1). A neater approach would be that in which ui is
obtained as soon as necessary, without the need of calculating
the rest of the sequence; such a result is indeed achieved for
the 1D Poisson equation of the form (2) by the method shown
in [4, p. 769], having the advantage that each nodal value ui

can be calculated independently of the others; in fact, using

the short-hand notation Ci for the right hand side of (2), and
letting

Zj = h2
jX

k=1

Ck , Yi =

iX

j=1

Zj , i = 1 . . . N , (6)

and R = (uN+1�u0+YN )/(N +1), one finds u1 = u0+R,

ui = u0 + i R� Yi�1 , i = 2 . . . N . (7)

The potential differences that appear in (3) are easily evaluated
from (6–7):

ui � ui�1 = R� Zi�1 , ui+1 � ui�1 = 2R� Zi�1 � Zi .

If the discretized form of the Poisson equation is such that the
method based on (6–7) is applicable, the calculation is cheaper
than the A = LU decomposition and completely decouples
the transport equation from the Poisson equation.
It is also worth remarking other differences with respect to
the standard discretization schemes: here, after discretization,
all functions and derivatives belong to the nodes, whereas in
the standard schemes the functions and the even derivatives
belong to the nodes, while the odd derivatives belong (in one
dimension) to the elements. Also, no hypothesis is necessary
here about the behavior of the discretized functions along each
element.

V. STABILITY

Iterations are in general necessary due to the non-linearity of
the equations; for instance, in a semiconductor the normalized
charge concentrations Pi�1, Pi, Pi+1 that appear at the right
hand side of (2) depend on the unknown u either exponentially
or through a Fermi integral; in both cases, the derivatives
dPi/du are negative irrespective of the fact that electrons or
holes are considered: in fact, hole concentration contributes
positively to the charge density, and decreases with increasing
u; electron concentration contributes negatively, and increases
with increasing u. It follows that the extra terms obtained
from the linearization with respect to u add weight to the
main diagonal of the algebraic system (2), thereby improving
convergence.
Coming now to (3), when the expressions of ci�1, ci, ci+1

that appear in the second equation of (1) are inserted into (3),
the right hand side of the ith row of the resulting algebraic
system is the sum of three terms: the first one, Ai = �gi�1+

2 gi � gi+1, has the same structure as that of the discretized
Poisson equations (2). The other two terms read

Bi =
(u0

i�1)
2 gi�1 + 10 (u0

i)
2 gi + (u0

i+1)
2 gi+1

48/h2
, (8)

Ci = �
Pi�1 gi�1 + 10Pi gi + Pi+1 gi+1

24/h2
. (9)

As the coefficients in (8) are non negative, they add weight
to all diagonals of the algebraic system (3); due to factor 10,
the added weight of the main diagonal is dominant unless the
ith node is in an extremum of u. As for (9), the analysis is
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complicated by the presence of the normalized charge density
P , which may have either sign. On the other hand, (9) is of
order 2 in h, whereas, due to a cancellation (compare with
(4)), Bi is of the same order as Ai, namely, order 0.
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Fig. 2. Maximum error (in percentage) of the node values between the
reference solution (N = 2000) and different runs for different biases
(V1 = 0.05V, V2 = 0.1V, and V3 = 0.15V).

VI. RESULTS

The scheme for solving the transport model was applied
here to a chalcogenide layer of thickness L = 30 nm and a
Gaussian trap distribution in the direction of the external field.
Uniformity was assumed in the direction normal to the field,
and the applied bias V was kept below threshold. The analysis
was carried out on different grids: we started with a large num-
ber of nodes (reference solution: N = 2000) and decreased it
down to N = 25. Fig. 1 shows ✏ = maxi(|nnew

i � nold
i |/nold

i )

vs. the number of iterations at different values of N , with
V = 0.1 V applied bias. The convergence criterion was
✏  10

�6. Letting C(N) be the computational cost needed
to fulfill this convergence criterion, the analysis showed that
C(1500) ' 26⇥C(25). To measure the accuracy of different
solutions as function of N , the relative error was calculated in
corrispondence of all nodes of the coarser grid (N = 25) by
considering the difference between the values of the solution
for all N with respect to the reference solution. Fig. 2
compares the maximum difference (in percentage) for different
biases.
Next, the error of the present method has been compared
with that of the exponential-fitting one; the results are shown
in the Tables. As before, the starting point was a reference
solution obtained with a dense grid (N = 2000); then, other
solutions were run with a progressively-decreasing number
of nodes, and the maximum difference with respect to the
reference solution was extracted. More precisely, Tab. I lists
⌘(') = maxi|'i�'ref

i | for different values of the grid nodes
and applied bias; the errors of the exponential-fitting method
are listed in column “SG”. In turn, Tab. II lists ⌘(n) =

maxi|ni�nref
i |/nref

M , with nref
M the maximum concentration of

the reference solution. Despite the simplicity of the problem in
hand, the improvement of the present method with respect to
the standard one is about one order of magnitude in all cases.
A final check refers to the constancy of the current density;
in fact, in a one-dimensional, steady-state case where the
mobility of the trapped electrons is set to zero, the continuity
equation yields J 0

n = q U = 0. As remarked above, with
the present method all functions and derivatives belong to the
nodes: it follows that Jn and J 0

n = q Dn (n00 � u0 n0 � u00 n)
belong to the nodes as well; the latter quantity is shown in
Fig. 3 as a function of position.
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Fig. 3. Modulus |J 0
n| as a function of position, with different biases (V1 =

0.05V, V2 = 0.1V, and V3 = 0.15V). The outcome is similar for all grids
examined.

To summarize, like in the case of the Schrödinger equation
[1], the NP-based approach represents a fairly simple way to
improve the solution of the semiconductor equations with a
limited increase in the computational burden. Indeed, the drift-
diffusion and current-continuity equations have been consid-
ered here by way of example; in fact, all pairs of moments of
order 2 k and 2 k+1, k = 0, 1, . . . of the Boltzmann transport
equation have the same structure: those of even order have
the form � divS = C, those of odd order have the form
S = a grad� + �rb, with a suitable meaning of symbols;
it follows that the present method applies to any order of
transport model in one dimension; also, considering that in
the dynamic case the term C above embeds the time derivative
@�/@t, the method is not limited to the steady state.
It may be argued that the approach depicted here is applicable
only in the one-dimensional case when a uniform grid is
used; in fact this is not true: NP has been extended to the
variable stepsize, still in one dimension [5]. The applicability
to 1D cases is not too severe a constraint when the solution
of transport problems in nano-sized cylindrical structures (e.g.,
nanowires or carbon-nanotube transistors) is sought, where the
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typical approach decouples the longitudinal coordinate from
the transversal ones [6].
Conversely, the extension of NP to the two- and three-
dimensional cases using tensor-product, uniformly-spaced
grids has also been achieved (in [7], with reference to the
Schrödinger equation), whereas that to non-uniform, multi-
dimensional grids is still missing. The multi-dimensional form
of (1) is readily obtained with the replacements g00  r2g
and u0  |ru|, to find

�r2g = c g + s , c = P/2� |ru|2/4 . (10)

Considering the case of a tensor-product, uniformly-spaced
grid, the notation becomes awkward even in two dimensions;
following [7] we adopt a matrix notation of the form

a11 g
j�1
i+1 + a12 g

j
i+1 + a13 g

j+1
i+1 + a21 g

j�1
i + · · · (11)

+ a23 g
j+1
i + · · ·+ a33 g

j+1
i�1 =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

g

,

where the lower (upper) index of gji , . . . refers to the x (y)
axis. Application of NP in two dimensions yields, first,

2

4
1 0 1

0 �4 0

1 0 1

3

5

g

= 2h2
(r2g)ji+ (12)

+
h4

6
[r2

(r2g)]ji +
2

3

2

4
1 �2 1

�2 4 �2
1 �2 1

3

5

g

.

Taking the Laplacian of both sides of (12), and neglecting
the 6th-order derivatives, allows one to eliminate [r2

(r2g)]ji .
Finally, replacing (r2g)ji from (10) and letting

M = �

2

4
1 4 1

4 �20 4

1 4 1

3

5 , J =

2

4
0 0 0

0 1 0

0 0 0

3

5 , (13)

eventually yields the two-dimensional generalization of (3):

Mg � h2

✓
6Jc g �

M c g

12

◆
= h2

✓
6Js �

M s

12

◆
. (14)

The result expressed by (14) extends that of [7] to the
second-order equation of the general form; its derivation also
shows that, like in the one-dimensional case, no hypothesis
is necessary about the behavior of the discretized functions
inside each elements or along its edges.
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