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Abstract—The device-scale simulation of electrically driven
quantum light sources based on semiconductor quantum dots
requires a combination of the (semi-)classical semiconductor
device equations with cavity quantum electrodynamics. We
present a comprehensive quantum-classical simulation approach
that self-consistently couples the (semi-)classical drift-diffusion
system to a Lindblad-type quantum master equation. This
allows to describe the spatially resolved carrier transport in
complex, multi-dimensional device geometries along with the fully
quantum-mechanical light-matter interaction in the quantum
dot-cavity system. The latter gives access to important quantum
optical figures of merit, in particular the second-order correlation
function of the emitted radiation. In order to account for the
quantum confined Stark effect in the device’s internal electric
field, the system is solved along with a Schrödinger–Poisson
problem, that describes the envelope wave functions and energy
levels of the quantum dot carriers. The approach is demonstrated
by numerical simulations of a single-photon emitting diode.
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I. INTRODUCTION

The currently unfolding “second quantum revolution” aims
at the development of novel quantum technologies that exploit
inherent quantum mechanical phenomena for communication
and information processing tasks. Many applications, such as
eavesdropping-secure encryption methods and optical quan-
tum computers, rely on efficient quantum light sources that
emit single photons on demand [1]. Semiconductor quantum
dots (QDs) are promising optically active elements for such
devices, as they provide an atom-like discrete energy spectrum
and can be directly integrated into semiconductor-based pho-
tonic resonators by standard growth techniques. In the interest
of compactness and scalability, electrical carrier injection is
highly desirable to overcome the need for external excitation
lasers. The theoretical analysis of the (semi-)classical carrier
transport in quantum light emitting diodes can contribute
significantly to their optimization, as the numerical simulation
facilitates the understanding of counter-intuitive phenomena
like rapid spreading of the injection current, which arise
under the typically extreme operation conditions (cryogenic
temperatures, very low current densities) [2].
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Fig. 1. Schematic illustration of the building blocks and the coupling
structure of the Schrödinger–Poisson-Drift-Diffusion-Lindblad system (1)–(5).
Adapted, with permission, from Ref. [3]. c� SPIE 2019

On the step from basic research to real world applications,
mathematical modeling and numerical simulation can assist
the development and optimization of novel device designs.
In many well-established simulation tools for optoelectronic
devices (e. g., conventional laser diodes, LEDs etc.), the drift-
diffusion model is coupled with semi-classical models for the
light-matter interaction (e. g., Maxwell–Bloch equations, rate
equations) to describe the optically active region. For devices
operating in the quantum optical limit, however, fully quantum
mechanical models are required to describe the light-matter
interaction [4]. To meet this requirement, we have devel-
oped a hybrid quantum-classical model system [5], that self-
consistently couples the drift-diffusion system to a Lindblad-
type quantum master equation [6], which describes the mi-
croscopic QD-cavity system in second quantization (dissipa-
tive Jaynes–Cummings model). In this paper, we extend our
approach by including a self-consistent Schrödinger–Poisson
problem, to account for the energy shifts of the bound QD
carriers in the device’s internal electrostatic field via the
quantum confined Stark effect.

355



Fig. 2. QD-photon system described by a dissipative Jaynes–Cummings model
with 4 electronic states: empty QD |0i, single electron |ei = e†|0i, single hole
|hi = h†|0i and bright exciton |Xi = h†e†|0i. The detuning � between the
exciton energy and the cavity resonance is controlled by the device’s internal
electrostatic field. Adapted, with permission, from Ref. [3]. c� SPIE 2019

II. HYBRID QUANTUM-CLASSICAL MODELING APPROACH

We describe a comprehensive modeling approach for the
simulation of quantum light emitting diodes. The approach
is based on the hybrid quantum-classical model system
proposed in Ref. [5] and is extended by a self-consistent
Schrödinger–Poisson problem modeling the envelope wave
functions and energy levels of the QD carriers [3]:
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The system comprises the semiconductor device equations
(1)–(3) for the transport and recombination dynamics of
the quasi-free electrons and holes, a stationary one-particle
Schrödinger equation (4) for each the QD bound elec-
trons and holes, respectively, and a Lindblad-type quantum
master equation (5) for the quantum statistical operator ⇢.
A schematic illustration of the “Schrödinger-Poisson-Drift-
Diffusion-Lindblad system” (1)–(5) and the interconnection of
its building blocks is shown in Fig. 1.

A. Semiconductor device equations

The electrostatic interaction between the freely moving and
bound carriers of the system is described by Poisson’s Eq. (1),
where � is the electrostatic potential, n and p are the densities
of (continuum) electrons and holes, C is the doping profile, Q
is the charge density of the QD carriers, q is the elementary
charge and " is the material’s dielectric constant. The carrier

densities are related to the electrostatic potential � and the
quasi-Fermi energies µc/v by the state equations
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where kB is Boltzmann’s constant, T is the absolute tem-
perature, Ec/v and Nc/v denote the band edge energy and
effective density of states of the conduction band/ valence
band, respectively, and F1/2 is the Fermi–Dirac integral. The
current densities jn/p (3) are driven by the gradients of the
quasi-Fermi energies

jn = Mnnrµc, jp = Mpprµv,

where Mn/p denotes the respective mobilities. The
(net-)recombination rate R includes spontaneous emission,
Shockley–Read–Hall and Auger recombination processes [7].

B. Schrödinger equation and wave function model
The energy levels and (envelope) wave functions of the

QD carriers are determined by the stationary Schrödinger
equation (4), where the Hamiltonian
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involves a position-dependent effective mass m
⇤
↵, the QD

confinement potential U↵ and the electrostatic potential �
given by Eq. (1). The confinement potential combines a finite
potential barrier (in growth direction) and a harmonic in-plane
confinement as typically assumed for lens-shaped InGaAs-
QDs [8]. The Schrödinger Eqs. (4) are solved with outgoing
wave conditions on a subset ⌦0 ⇢ ⌦ of the full domain. In
general, this is a non-Hermitian eigenvalue problem that yields
complex eigenvalues E↵ 2 C (quasi-bound states).

C. Lindblad master equation
The many-body Hamiltonian H in the quantum master

Eq. (5) describes the one-particle energy contributions of the
QD carriers, the energy of the quantized radiation field, the
quantum-mechanical light-matter interaction and the Coulomb
interaction between the bound carriers in second quantization:
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Here, a and a
† are the bosonic annihilation and creation

operators of the cavity photons and e (h) and e
† (h†) are

the respective fermionic operators for the QD-bound electrons
(holes). The single-particle energies "e/h=Re

�
Ee/h

�
are

taken as the real values of the complex eigenvalues determined
by Eq. (4). Moreover, ~!0 is the resonance energy of the cavity
and
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is the light-matter coupling constant with the interband dipole
moment dc,v , mode volume V0 and refractive index nr. Finally,
Ve,h is the QD exciton binding energy.
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Fig. 3. Stationary injection at I = 2.75 nA (U = 1.49V) and T = 30K. The QD is located on the symmetry axis at (r, z) = (0, 0). (a) Electron density
n (color coded) and current density jn (arrows indicate the direction of particle flux) and (b) hole density p (color coded) and current density jp. In the
low-injection regime, the scattering of continuum carriers to the QD contributes notably to the current guiding. (c) Recombination rate and scattering losses
R+Sn+Sp of continuum carriers. (d) Electrostatic potential � in the diode and the insulator domain. Adapted, with permission, from Ref. [3]. c� SPIE 2019

The dissipation superoperator D (⇢) in Eq. (5) models the
irreversible coupling of the quantum system to its macroscopic
environment. For the sake of coupling to the semiconductor
device equations, we separate the full dissipator

D (⇢) = De (⇢) +Dh (⇢) +D0 (⇢) (8)

into processes that change the charge of the QD (De/h (⇢)) or
leave it invariant (D0 (⇢)). The individual terms are
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superoperator [6]. The capture of electrons and holes into the
QD is described by De (⇢) and Dh (⇢), where p

(0)
e/h is the

capture rate for scattering into an empty QD. If the QD is
already charged by a single carrier, the enhanced capture rate
p
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e/h applies. The capture rates are driven by the continuum

carrier densities n, p in the vicinity of the QD
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i 2 {0, 1}, with capture coefficients �(i)e/h fitted to microscopic
calculations. The charge neutral dissipative processes in D0

are the emission of cavity photons with loss rate �c, the
spontaneous emission of the QD exciton to waste modes with
decay rate �sp and phenomenological pure dephasing with �d.

D. Coupling terms in macroscopic system

Finally, due to charging of the QD and scattering of contin-
uum carriers to bound states, the quantum system couples back
to the semi-classical transport system (1)–(3). The QD charge

density Q in Poisson’s Eq. (1) is given by the expectation
value of the field operator  (r) =  e (r) e+  
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where h. . .i = tr (⇢ . . .), i.e., the QD carrier’s spatial probabil-
ity distributions (from Eq. (4)) multiplied by the occupation
probability obtained from the quantum master equation (5).
Following Ref. [5], the loss terms (due to capture of continuum
carriers to the QD) on the right hand side of the continuity
equations (2)–(3) are modeled using the charge number oper-
ator N = e

†
e� h

†
h and the dissipators (9a)–(9b) as

Sn = + | e (r)|
2 tr (NDe (⇢)) , (11a)

Sp = � | h (r)|
2 tr (NDh (⇢)) . (11b)

The definitions (10)–(11) guarantee charge conservation [3, 5].

III. NUMERICAL METHOD AND SIMULATION RESULTS

The hybrid quantum-classical model system (1)–(5) is ap-
plied to simulate the stationary operation characteristics of
the single-photon emitting diode shown in Fig. 3. The diode
features a monolithically fabricated microlens structure on top,
which is optimized for a high coupling efficiency to an external
optical fiber [9]. The top-contact is assumed to consist of an
optically transparent material (e. g., ITO), placed on an thick
insulator layer with relative permittivity "s = 3.0. There is
only a small semiconductor-contact interface, see Fig. 3. On
the insulator domain, only Poisson’s Eq. (1) is solved. The
GaAs material parameters for the drift-diffusion system are
taken from Ref. [10], the doping densities are assumed as
N

+
D = 2⇥ 1018 cm�3 and N

�
A = 1⇥ 1019 cm�3. Despite the

low temperature T = 30K, full ionization of the dopants is
assumed due to the metal-insulator transition. For the carrier
mobilities Mn,p a temperature and doping dependent low field
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Fig. 4. (a) Exciton occupation probability NX and photon emission rate �cha†ai as a function of the injection current (or applied bias). (b) Power spectrum
P (!) calculated from Eq. (12) vs. applied bias. The exciton energy (X) is blue-shifted with the increasing bias due to the quantum confined Stark effect.
The resonance with the optical cavity mode (C) appears at U ⇡ 1.516V and yields a maximum photon emission rate of about 70MHz. (c) Time-resolved
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model is used [11]. The full system (1)–(5) is solved by
iterating (1)–(3)!(4)!(5)!(1)–(3)! . . . until convergence
is reached (cf. Fig. 1 (a)). The drift-diffusion system (1)–(3) is
discretized using a finite volume Scharfetter–Gummel method
for Fermi–Dirac statistics [12, 13]. We use the temperature
embedding method described in Ref. [14] to cope with the
ill-conditioned discrete system at cryogenic operation temper-
ature and low bias. Schrödinger’s Eq. (4) is discretized using
a second order finite difference scheme.

Figure 1 (a) shows the QD occupation and photon generation
rate as a function of the applied bias. The power spectrum

P (!) =
1

2⇡

Z 1

�1
d⌧ e�i!⌧

ha
† (⌧) a (0)i (12)

is shown in Fig. 1 (b). At U ⇡ 1.516V the QD exciton is
tuned into resonance with the cavity mode (via the quantum
confined Stark effect), which yields a maximum single-photon
generation rate of about 70 MHz, see Fig. 1 (a). At high
injection currents, excitation-induced dephasing leads to a
notable broadening of the emission line. Slightly below the
diode’s threshold voltage, the loss terms Sn/p are the dominant
terms on the right hand side of the continuity Eqs. (2)–(3), see
Fig. 3 (c), such that the QD appreciably contributes to current
guiding, see Fig. 3 (a, b). The second-order correlation function

g
(2) (⌧) =

ha
† (0) a† (⌧) a (⌧) a (0)i

ha† (0) a (0)i2
(13)

describes the single-photon purity of the device and is plotted
in Fig. 1 (c) for different voltages. The characteristic dip at
g
(2) (0) ⇡ 0 indicates anti-bunching of the emitted photons,

which is a truly non-classical feature of the optical field.

IV. OUTLOOK AND CONCLUSIONS

The hybrid quantum-classical model system for the sim-
ulation of electrically driven quantum light sources intro-
duced in Ref. [5] has been extended by a self-consistent
Schrödinger–Poisson system. The extended model allows to
describe important phenomena such as the quantum confined
Stark effect and resonances with the cavity mode. It might be
used to investigate spectral diffusion of the emission energy
due to stochastic fluctuations in future works.
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