Process Simulation in the Browser:
Porting ViennaTS using WebAssembly

Xaver Klemenschits, Paul Manstetten, Lado Filipovic, and Siegfried Selberherr
Institute for Microelectronics, TU Wien, GuB3hausstrale 27-29/E360, 1040 Wien, Austria
Email: klemenschits @iue.tuwien.ac.at

Abstract—We introduce a client-side browser application for
high performance process simulation. The codebase is taken from
ViennaTsS, an open-source C++ process simulation engine, and
completed with JavaScript based components, such as an editor
to configure the simulation parameters and a result viewer. The
C++ codebase is ported to the browser by compiling to a portable
standard for an abstract instruction set: WebAssembly. We
demonstrate the capabilities and performance of the application
by performing several configurable simulations, including the
emulation of the fabrication process of a stacked nanosheet
field effect transistor. The simulations conducted in the browser
application are only slower by a factor of 1.6 to 3.6 compared
to native, single-thread simulations. Therefore, WebAssembly
presents a promising format for portable and widely accessible
high performance process simulations.

I. INTRODUCTION

The introduction of three-dimensional metal oxide semi-
conductor field effect transistors (MOSFETS), such as FinFETs
and nanowire transistors, has created the need for intricate
fabrication techniques incorporating new materials and pro-
cesses. As the fabrication of devices for advanced technology
nodes becomes increasingly complex and costly, technology
computer aided design (TCAD) is more and more important
to investigate possible new fabrication techniques. Especially
software development has benefited strongly from open source
initiatives, creating productive global platforms for innovation.
Although open-source tools for process simulation exist, their
wide and active adoption and thus the creation of creative
development platforms is often limited by a narrow application
focus pursued by a small user group. As large numbers
of users are beneficial to open source projects, deployment,
accessibility, and visibility are highly important for a wider
acceptance of such tools.

With the advent of WebAssembly (WA) [1], an open
standard describing a binary format expressing assembly-like
instructions for a virtual processor, a framework for portable
high performance code was created. The WA design rationale
is to establish a portable executable format which can be
compiled quickly for any target system, in a fast single-
pass fashion. The WA framework therefore allows client-
side browser applications to be built using existing C/C++
codebases, enabling portable high performance applications
to be deployed and accessed at any scale without requiring
backend investments.

ViennaTS [2], an open-source, high performance process
simulator written in C++, was ported to the browser, since
it offers a wide array of simple as well as highly complex
process models describing modern semiconductor fabrication
steps. Here, we present the results of compiling ViennaTS
using WA combined with a user interface to edit parameters

978-1-7281-0940-4/19/$31.00 (©2019 European Union

and view simulation results in a unified application [3]], which
is easily deployable at scale.

II. PROCESS SIMULATION USING VIENNATS

ViennaTS [2] is an open-source, C++ based process simula-
tor which supports two- and three-dimensional simulations of
semiconductor fabrication processes. The materials and their
interfaces are represented with a sparse-field level-set frame-
work discretised on a Cartesian grid [4]. Large numbers of
materials can therefore be represented accurately with minimal
memory requirements. The level-set is stored in a hierarchical
run length encoded (HRLE) data structure, optimised for level-
set operations, such as re-distancing, velocity extension, and
advection on a sparse data set. A set of advanced physical etch-
ing and deposition models is available, which include particle
transport at feature-scale and intricate chemical models for the
description of surface reactions. Particle transport at feature-
scale is modelled using a Monte Carlo ray tracing approach
via an explicit representation of the surface with partially
overlapping disks [S]. Accelerated geometric models to em-
ulate various process steps are also available, which advance
the material interfaces solely by geometric considerations,
offering efficient, albeit less accurate, process descriptions.
Therefore, many different processing techniques with varying
accuracies can be combined and tuned to match a wide field
of applications.

III. WEBASSEMBLY

WebAssembly is an open standard for a virtual instruction
set architecture (ISA)[1]. Basic components of an ISA are
supported data types, an instruction set (for control flow,
arithmetic/logic, and memory operations) and its encoding.
The advantages of the virtual ISA of WA over a native ISA
of a specific processor is that it has a portable hardware-,
platform-, and language-independent design, which aims to
execute in a sandboxed memory-environment with near-native
speed. The interfacing/interoperation with the environment
provided by the execution platform has a simple universal
design and is not limited to web-platforms (i.e., the JavaScript
engine of a browser). Further design goals are the ability to
efficiently decode, validate, and compile the instructions of a
WA program on the execution platform.

Since 2017 WA support has been widely adopted across
most major browsers and JavaScript engines, and about 85%
of currently installed browsers support it [6]. When compared
to JavaScript, the execution performance and performance
predictability of WA profits from the fact that all types are

339

mailto:klemenschits@iue.tuwien.ac.at

statically declared and programs can be compiled ahead-
of-time and the execution is not interrupted by a garbage
collector.

Additionally to the integration of WA support in all major
browsers and JavaScript engines, there is also active devel-
opment of WA-runtimes for desktop applications and efforts
are ongoing to standardise the communication between WA
and it’s embedding platform with a WebAssembly System
Interface (WASI)[7]. Due to the aforementioned universal
interfacing of WA with its environment WASI, each platform
implements its own interfacing strategy. The WASI aims to
allow for a modular specification to provide a portable modular
WA -interfacing.

The motivation for WA is due in part to the success
of its predecessors NaCl[8] and especially asm.js[9]. The
JavaScript library asm.js can even be seen as a blueprint for
the WA standard, since it allowed native C/C++ to JavaScript
compilation, which resulted in performant execution due to
the use of a limited subset of JavaScript language features.
Only the features which can be accessed by the ahead-of-
time optimisation of all common JavaScript engines are part
of this subset. Realising the potential of this approach, browser
vendors implemented optimisations specifically for asm.js in
their JavaScript engines, increasing the performance further.

The infrastructure for compiling C/C++ for a web-browser
is currently actively developed in emscripten [10] and
LLVM[11]. This framework aims to keep the necessary
changes to the C/C++ codebase at a minimum by providing
all implementations of commonly used interfaces to the envi-
ronment, e.g., by providing a virtual file system and tailored
standard libraries to map system calls to common browser
engine instructions.

Currently, the main limitations, when porting an existing
C/C++ codebase to WA, include a maximum memory of 4GB
(WA has a 32bit address space), no wide support for C++
threads/OpenMP, and limited support for dynamic linking.

In the following, we describe the portable application built
around our ViennaTS WA module. Porting the C++ codebase
to be compiled to WA with emscripten required 570 lines to be
added or modified, from a total of 28,986 lines of the entire
project. Therefore, the change required to port this existing
high performance C++ codebase to WA only corresponds to
about 2% of the total code base.

IV. IN-BROWSER APPLICATION

Fig. [I] provides an overview of the system components typ-
ically involved on a desktop computer when using ViennaTS
to simulate a process step. After preparation of the process
parameters in an Editor, ViennaTS (vts.exe) is started by
providing the parameter file (par.txt) which references the
initial geometries (geo.vtk). The results (res.vtk) can
then be visualised by loading them into a Result Viewer.

Analogously to Fig. [T} Fig. 2] provides an overview of the
components necessary for the In-Browser Application: The
user interface is executed in the UI Thread of the browser
and contains an Editor and a Result Viewer, which are both
pure JavaScript applications. The Web Worker, executed in
a different thread than the user interface, loads ViennaT$S
(vts.wasm) and compiles it for the current host system in
a single pass. When the simulation is started, the parameter

340

File IO

Desktop System

Editor
par.txt

ViennaTS

<.
(native binary)

// ViennaTs

geometry ="geo.vtk"

File System
Result Viewer vts.exe
. vtk
oy geo.vtk —

—» par.txt —

M

Fig. 1: Components typically involved in the preparation,
execution and inspection of simulations conducted with the
native desktop version of ViennaTS [2].

<4——res.vtk «—

Webserver File 10
——par.txt vts.wasm-— Webworker API
geo.vtk HTTP GET
Browser
Ul Thread WebWorker
Editor ViennaTS
par.txt
NE -
__»{{‘ViennaTS 7] (webassembly
geometry ="geo.vtk" module)
: Virtual
Result Viewer File System
res.vtk L geo. vtk —

—» par.txt —

Ml

Fig. 2: Components involved in conducting a simula-
tion with the ViennaTS in-browser application available at
hpcwasm.github.io/viennats.

<«+——res.vtk «—

file (par.txt) is transferred to the Web Worker and stored
in its Virtual File System. The initial geometries (geo.vtk),
referenced in par.txt, are then fetched from the Webserver
by the Web Worker. Once all required files are available, the
Web Worker executes ViennaTS which writes the simulation
results (res.vtk) to the Virtual File System. As soon as the
results have been written, they are automatically transferred to
the UI Thread and visualised in the Result Viewer.

The full user-interface can be seen in Fig. [3] which shows
the most important parts needed to start a simulation. The
”Settings” section allows the user to load and manipulate
existing parameter files using an Editor. Once the user has
populated the parameter file, the simulation can be started

https://hpcwasm.github.io/viennats

using the controls in the “Simulation” section, which also
shows text-based simulator output and simulation progress. In
the “Results” section, the generated output meshes are shown
in the Result Viewer, providing basic mesh inspection and
manipulation functionality as well as the ability to download
the results.

ViennaTS ~ o TU
WIEN

Settings Loaded: Stacked N

process,
model_na

add_laye
paramete
constant_rates={1.0, 0, 0, 1.0, 0.1, 1.0, 6};
}

output_volume={11};

simulation

Results
Recenter camera 14 Output22/26 b Bl

Hull 22vtp L.

Clipping Axis Hull_22vtp.png 1

®x Oy
—e

S
Fig. 3: Graphical User Interface of the application. The Editor
in the ”Settings” section is used to create a parameter file
used as input for ViennaTS. The ”Simulation” section provides
additional console output when expanded and the “Results”
section shows the output geometries as they become available
in the Result Viewer and provides mesh manipulation tools.

V. BENCHMARKS & PERFORMANCE EVALUATION

In order to evaluate the performance differences between
the WA and native versions of ViennaTS, numerous bench-
mark simulations were conducted. Some of these apply only
emulations, advancing material interfaces purely by geometric
parameters, while others use Monte Carlo (MC) ray tracing
methods to model the particle transport inside a reactor at the
feature-scale and provide chemical models to describe surface
reactions. All benchmark simulations are available and can be
executed online at [3]].

Table [l shows the different execution times obtained on
a desktop computer and a smartphone for several single-
threaded simulations. On the desktop, the runtime performance
gap between native and browser execution varies between
a factor of 1.6 to 3.6, depending on the simulation. The
runtime performance gap between native execution and mobile
browsers is even larger. The mobile version is slower by a
factor of 10.0 to 18.6. The performance gap is caused firstly
by optimisation differences, since two separate compilation
stages are necessary for WA, and secondly by the more

complex memory management of a browser compared to an
operating system. The latter results in a larger runtime gap
for simulations which are more memory intensive. On the
other hand, Monte Carlo enabled simulations (labelled MC
in Table [[), which are rather computationally than memory
intensive, show smaller runtime gaps.

Simulation Native Firefox Chrome Mobile

Geom. Hole Etch 6.97 16.97 (2.4) 20.46 (2.9) 128.62 (18.5)
Phys. Hole Etch(MC) 11.95 30.46 (2.5) 42.88 (3.6) 188.11 (15.7)
Geom. Air Gap Depo 12.27 30.10 (2.5) 36.08 (2.9) 228.56 (18.6)

Phys. Air Gap Depo (MC) 12.99 21.23 (1.6) 22.58 (1.7) 130.01 (10.0)

Geom. HAR Etch 526 12.77 (2.4) 15.90 (3.0) 92.88 (17.7)
Phys. HAR Etch (MC) 12.00 31.21 (2.6) 39.91 (3.3) 189.64 (15.8)
Geom. Deposition 6.54 1557 (2.4) 19.84 (3.0) 121.51 (18.6)
Phys. Deposition(MC) 34.65 52.34 (1.5) 58.61 (1.7) —

Stacked Nanosheet 9.61 25.19 (2.6) 27.79 (2.9) —

Avg. Perf. Gap - 23 2.8 16.4

TABLE I: Runtime (without output) comparison for the |show-
cased examples| of process emulations (Geom.) and physical
simulations (Phys.) on a desktop computer (Linux; Intel i7-
3770 processor) natively (Native) and in the browser (Chrome
73.0, Firefox 66.0). Additionally, Mobile benchmarks (Firefox
Mobile 66.0) were conducted on a smartphone (Android;
Kirin 650 processor). The relative runtime gaps to the native
execution are shown in brackets. Models labelled (MC) use
physical models with Monte Carlo ray tracing methods.

VI. STACKED NANOSHEET FABRICATION PROCESS

In order to highlight the full capabilities and performance of
the ported simulator, the fabrication process of an advanced-
node stacked nanosheet FET was emulated starting from a
blank SOI wafer. Since this geometry is comparably large,
the high memory requirements result in a relatively large
runtime gap, even exceeding the capabilities of the tested
mobile browser. Therefore, all models used to create the final
structure were purely geometric and MC models were not
applied. These models and their input parameters are shown
in Table [

Experimental data from [12] and [13] were used to calibrate
the process steps, resulting in a geometry which matches
a typical structure in use today. Fig. [4] shows the resulting
geometry at the most important process steps: Starting from
a blank SOI wafer, Si, SiGe, and Si layers are deposited
epitaxially. These layers are then patterned to fins, using self
aligned double patterning, creating the structure shown in
Fig.fal After removing the mask, a dummy gate is created by
depositing Poly-Si isotropically over the fins. As can be seen in
Fig. @bl the resulting Poly-Si is then patterned to the required
gate dimensions [14]. Hf is deposited around the gate to form
insulating spacers between the gate and source/drain regions.
Directional etching is then applied to generate the required
vertical spacers, as shown in Fig. The fins extending out
from under the gate and spacer are removed to expose the
bottom Si layer. This Si layer is subsequently used as a seed
material for the epitaxial growth of Si, forming the source
and drain by connecting the two silicon channels of each
fin, which results in the structure shown in Fig. @ Next, an
interlayer dielectric is deposited and the surface is levelled
using chemical mechanical planarisation (CMP). After the
removal of the dummy gate, the SiGe layer separating the two

341

https://hpcwasm.github.io/viennats
https://hpcwasm.github.io/viennats

Physical Process

ViennaTS Model

Geometric Parameters

Si Epitaxy ConstantRates ~ Si=+7nm

SiGe Epitaxy ConstantRates ~ SiGe=+8nm

Si Epitaxy ConstantRates ~ Si=+7nm

Fin Mask Mask Add predefined mask
SADP Mask Growth ConstantRates ~ SADPMask=+15nm
Pattern SADP Mask DirectionalRates SADPMask=(0,0,-20nm)
Fin Mask Removal BooleanOp Remove Fin Mask

Fin Patterning DirectionalRates Si/SiGe=-30nm, Spacer=-15nm
SADP Mask Removal BooleanOp Remove SADPMask Material
Dummy Gate Deposition ConstantRates ~ PolySi=+55nm

Dummy Gate CMP Planarization PolySi

Gate Mask Mask Add predefined mask
Dummy Gate Patterning ® DirectionalRates PolySi=-90nm

Gate Mask Removal BooleanOp Remove Gate Mask
Gate Spacer Deposition ~ ConstantRates ~ Hf=+12nm

Gate Spacer Patterning ¢ DirectionalRates Hf=(0,0,-35nm)

Remove Fins at S/D DirectionalRates Si/SiGe=-20nm

S/D Epitaxy ¢ ConstantRates ~ Si=+11nm

ILD Deposition ConstantRates ~ ILD=+35nm

ILD CMP Planarization ILD

Dummy Gate Removal ConstantRates ~ PolySi=-80nm

NW Release © ConstantRates ~ SiGe=-10nm

Gate Dielectric Deposition ConstantRates — Hf=+2

Gate Metal Deposition ConstantRates ~ TiN=+4nm

Gate Electrode Deposition ConstantRates ~ W=+20nm

Final CMP f Planarization All materials

TABLE II: Summary of the geometric models used to create
the structure, as shown in Fig. [d] The model “ConstantRates”
isotropically deposits(+) or etches(-) the respective material.
“DirectionalRates” deposits/etches the material only in a spec-
ified direction. "Mask” adds a predefined mask geometry,
“Planarization” flattens the topology at a certain height, and
”BooleanOps” is used here to completely remove materials.
Superscript letters refer to the subfigures in Fig. 4] The
exact parameters used in the simulation can be found at
hpcwasm.github.io/viennats/#/simulation/stackednanosheet.

Si nanowires is etched away leaving the nanowires suspended
in the air, as shown in Fig. Finally, the gate dielectric
(HfO,), the gate metal (TiN), and the gate contact material
(W) are deposited to create the final structure shown in Fig. fif]

VII. CONCLUSION

The C++ codebase of ViennaTS was compiled to Web-
Assembly and executed in the browser. By doing so, it was
shown that porting complex C++ codebases to a performant
portable format can be achieved with few changes to the
original code. WebAssembly therefore presents a promising
platform for the deployment of scientific software.

Native performance cannot be matched due to the technical
limitations of portable code execution. However, we could
show that the average performance gap for the process sim-
ulator ViennaTS is only a factor of 2.3 for Firefox and 2.8
for Chrome compared to native desktop execution. Since all
computations are carried out on the client-side in the browser,
this enables portable high performance process simulations,
accurately describing complex state-of-the-art fabrication tech-
niques commonly applied in the semiconductor industry.

REFERENCES

[1] WebAssemblyCommunityGroup(W3C). Webassembly Specification.
[Online]. Available: https://webassembly.github.io/spec/

[2] O. Ertl et al. ViennaTS - The Vienna Topography Simulator. [Online].
Available: https://github.com/viennats/viennats-dev

[3] P. Manstetten and X. Klemenschits. ViennaTS - Webassembly Port.
[Online]. Available: https://hpcwasm.github.io/viennats

342

(a) Epitaxial growth and
double patterning.

(b) Dummy gate patterning.

(c) Spacer formation and (d) Source/drain epitaxy.

patterning.

(e) Channel release.

(f) Final geometry after gate
material deposition.

Fig. 4: Full stacked nanosheet process emulated in the browser
using ViennaTS for WebAssembly. The figures show the
geometry after the process steps described in each caption.

[4] R. T. Whitaker, “A Level-Set Approach to 3D Reconstruction from
Range Data,” International Journal of Computer Vision, vol. 29, no. 3,
pp. 203-231, 1998.

O. Ertl and S. Selberherr, “Three-Dimensional Topography Simulation
using Advanced Level Set and Ray Tracing Methods,” in 2008
International Conference on Simulation of Semiconductor Processes
and Devices. 1EEE, 2008, pp. 325-328.

A. Deveria. caniuse.com. [Online]. Available:
https://caniuse.com/#search=webassembly
WebAssemblyCommunityGroup(W3C). Webassembly System
Interface. [Online]. Available: https://github.com/WebAssembly/WASI
Google. Google Native Client. [Online]. Available:
https://chromium.googlesource.com/native_client/src/native_client.git
A. Zakai, Mozilla. asm.js. [Online]. Available: http://asmjs.org

A. Zakai, “Emscripten: an LLVM-to-JavaScript Compiler,” in
Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications
Companion. ACM, 2011, pp. 301-312.

LLVM Developer Group. LLVM. [Online]. Available: http://llvm.org
H. Mertens et al., “Gate-All-Around MOSFETs based on Vertically
Stacked Horizontal Si Nanowires in a Replacement Metal Gate
Process on Bulk Si Substrates,” in 2016 Symposium on VLSI
Technology. 1EEE, 2016, pp. 1-2.

N. Loubet et al., “Stacked Nanosheet Gate-All-Around Transistor to
Enable Scaling beyond FinFET,” in 2017 Symposium on VLSI
Technology. 1EEE, 2017, pp. T230-T231.

S. Barraud et al., “Tunability of Parasitic Channel in Gate-All-Around
Stacked Nanosheets,” in 2018 IEEE International Electron Devices
Meeting (IEDM). 1EEE, 2018, pp. 21.3.1-21.3.4.

[5]

[6]
[7

—

[8]

[9]
[10]

[11]
[12]

[13]

[14]

https://hpcwasm.github.io/viennats/#/simulation/stackednanosheet
https://webassembly.github.io/spec/
https://github.com/viennats/viennats-dev
https://hpcwasm.github.io/viennats
https://hpcwasm.github.io/viennats/#/simulation/stackednanosheet
https://caniuse.com/#search=webassembly
https://github.com/WebAssembly/WASI
https://chromium.googlesource.com/native_client/src/native_client.git
http://asmjs.org
http://llvm.org

