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Abstract— In this paper, we show the possibility of using 
Technology Computer Aided Design (TCAD) to assist machine 
learning for semiconductor device failure trouble shooting and 
device reverse engineering. When TCAD simulation models and 
parameters are properly chosen and calibrated, large number 
of devices with random defects and structural characteristics 
can be generated and simulated. The results can then be used to 
train machine learning algorithms to predict the defect and 
structural characteristics of a device with given electrical 
characteristics (such as IV’s and CV’s). 1D PIN diode with 
various layer thicknesses and doping concentrations are used in 
this study. It is showed that with less than 2000 training samples, 
by using simple linear regression, one can achieve good 
prediction of layer thickness and doping of a given IV curve.  

Keywords—Machine Learning, Reverse Engineering, TCAD, 
Semiconductor Defects 

I. INTRODUCTION 

Semiconductor device failure troubleshooting and device 
reverse engineering require expensive analyses such as SEM 
and TEM [1]. Machine learning (ML) has been used widely in 
the manufacturing process to enable early discovery of defects 
[2]. However, the authors are not aware of any extensive 
application of ML to analyze defects based on fabricated 
device electrical characteristics, such as Current-Voltage (IV) 
and Capacitance-Voltage (CV) curves, where defects include 
epitaxial layer thickness and doping level variations. This is 
probably because, for a matured process with high yield, the 
number of defective dies is limited, while for nascent process 
with low yield, the number of dies produced are limited. As 
result, it is difficult to obtain enough defective IV curves for 
accurate machine learning. 

Using TCAD, in principle, a large number of IV’s and 
CV’s can be generated by changing the layer thicknesses (to 
model epitaxial layer variation) and doping levels (to model 
doping variation), and by including various defective models 
(such as trap assisted tunneling at various spatial location). 
ML can then be used to generate model to accurately correlate 
IV and CV curves to defect characteristics. Using the trained 
model, one can rapidly narrow down the possible cause of an 
abnormal IV or CV curve and, if necessary, perform further 
failure analysis (e.g. cutting TEM at the most probable failure 
spot predicted by ML). The same reasoning applies well in 
device reverse engineering.  

In this paper, we demonstrate this idea by studying the 
relationship between 1-D PIN diode structural defects 
(epitaxial layer thickness and doping concentration variations) 
and its forward and reverse IV curves. Various machine 
learning models are tested. To reduce the number of TCAD 

simulations, epitaxial layer thickness and doping 
concentration studies are performed separately. 

II. TCAD SIMULATIONS 

Figure 1 inset shows the structure simulated in which only 
layer thickness variations are studied. About 2000 1D PIN 
diode structures are created using SProcess [3] with n+/i/p+ 
thicknesses being varied independently and uniformly within 
the range given in Figure 1. Figure 2 shows the scattering plots 
of n+/i/p+ thicknesses, which are uniform and independent.  
Sdevice [4] is then used to simulate the IV characteristics. 
Essential physics models are turned on, including Fermi-Dirac 
statistic, doping dependent and high field saturation models 
for carrier mobilities, Schottky-Reed-Hall Recombination 
(SRH) and non-local Band to Band tunneling (BTBT). 80-bit 
ExtendedPrecision is used to avoid noisy reversed curves. 
Poisson, electron and hole continuity equations are solved 
self-consistently to produce the curves in Fig. 1. 

Figure 5 shows the IV’s of another 2000 1D PIN diodes 
simulated with layer concentrations varied independently and 
uniformly in their logarithmic values. The corresponding inset 
shows the structure simulated and the variation range. Figure 
6 shows that the layer concentrations are independent and their 
logarithmic values are uniformly distributed. 

 

 
 

Figure 1: IV’s of the 2000 devices (thickness variations only) 
simulated. The thick pink dash line is the IV of nominal device 

(200nm/10nm/200nm). Both n+ and p+ concentrations are 
1020cm-3. i-layer concentration is 1017cm-3. 
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III. MACHINE LEARNING FOR THICKNESSES PREDICTION 

Scikit-learn library is used for ML [5]. Four types of 
algorithms were tested on the layer-thickness data, namely, 
linear regression (LR), decision tress (DT), random forest 
(RF) and Multi-Layer Perceptron (MLP) Regressor. 80% of 
the data (~1600) are used for training and 20% of the data 
(~400) are used for validation. The input is the IV curve (102 
current values for V = -2V to 2V) and the output are 
i_thickness and n_thickness. Various parts of the IV curve are 
used for training, namely, I(V=-2V), I(V=-2V to 0V), I(V=0V 
to 2V) and I(V=-2V to 2V).  

The first attempt to train the machine with the raw data 
was not successful. This is because the current changes orders 
of magnitude for various thicknesses in reverse bias. As 
showed in Figure 3, the model fails to predict large i_thickness 
(prediction is capped at about 12nm) because reverse current 
( I ) is indistinguishable numerically in the raw form for large 
i_thickness. Moreover, at sufficiently low current level (i.e. 
when i-thickness is sufficiently large), SRH will dominate and 
has very weak dependent on the layer thicknesses. If log(I) is 
used, it gives much better prediction. Therefore, in all 
trainings for layer thicknesses, log(I) is used. 

Table 1 shows the i_thickness and n_thickness prediction 
Mean Squared Error (MSE) of various machines trained by 

different data ranges and algorithms. The learning can be 
summarized as: 

1) DT is a not a suitable algorithm as it often overfits 
(training MSE = 0, with large prediction MSE) 

2) LR performs the best with low training and 
prediction MSE for both i_thickness and n_thickness 

3) MLP performs similar to LR for i_thickness but fails 
with n_thickness 

4) Wide voltage range (-2V to 2V) gives the most 
accurate results. However, depending on the problem of 
interest, reduced voltage range gives similar results and 
simulation time can be substantially reduced. For example, by 
using the current at -2V, high accuracy of i_thickness can be 
obtained already because i_thickness influences the BTBT 
current strongly. 

5) It is important to perform the simulation in a regime 
where the relevant physics is captured. For example, reverse 
current is insensitive to n_thickness. Therefore, bad result is 
obtained if data is only available between -2V to 0V. Positive 
bias simulation is required for n_thickness as forward neutral 
region potential drop correlates strongly to n_thickness. 
(Figure 4) 

Training of p+ layer thickness gives similar results as the 
n+ layer thickness and are not shown. 

 

 
Figure 3: Prediction of i_thickness using linear regression 
model trained with raw current data (I, left) and processed 

current data (log(I), right) at V = -2V. 

 

 
 

Table 1: Training and prediction Mean Squared Errors (MSE) 
of i_thickness and n_thickness by machines trained by various 

data range and algorithms. The numbers are format in 
“training MSE/ prediction MSE”. 

 

 
 

Figure 4: n_thickness prediction by LR machines trained by 
data from -2V to 0V (left) and data from 0V to 2V (right). 

 
Figure 2: Scattering plot of n+/i/p+ thicknesses showing 

their frequencies and correlations. 
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IV. ML FOR CONCENTRATIONS PREDICTION 

Since linear regression shows excellent results in 
predicting the layer thicknesses of an 1D PIN diode, it is also 
used to train the model to predict the layer concentrations as 
the non-linearity is expected to be the similar or less. The 
structures, IV’s and variations are showed in Figures 5 and 6. 

The IV distribution of concentration varying diodes is 
showed in Figure 5 and is very different from that of layer 
thickness varying one in Figure 1 in the forward region. In 
Figure 1, the thicknesses, thus the neutral region resistance, 
vary less than 2 times. But in Figure 5, the concentrations vary 
by 100 times, which results in large variation of resistance 
and, thus, forward current. Moreover, from the forward 
current traces in the inset of Figure 5, one can see that in 
additional to the magnitude, the shape and curvature vary for 
different doping concentrations. For example, when the 
concentration is high, the curvature is positive in the whole 
region. But when the concentration is low, the curvature 
changes from positive to negative as voltage increases. 

Therefore, it is expected that the forward region IV will 
contain sufficient information of the n+ and p+ layer 
concentrations. Moreover, since it is in forward region, the 
current values are used directly in the training instead of their 
logarithmic values being used. 

Since n+ and p+ concentrations both have big impact to 
the IV, multi-variate linear regression is used instead of multi-
variation linear regression (which is equivalent to multiple 
independent linear regression).  

Firstly, currents from V = 1.8V to V = 2V are used for 
training. As shown in Figure 7, although it is expected that 
doping should have strong impact on the diode current at high 
forward bias, the training result is very bad. There are two 
groups of data. The lower concentration one is of the i-layer 
while the higher concentration one is of the n+ and p+ regions. 
Since i-layer doping has very small effect on the forward 
current (due to its small thickness), the model cannot predict 
any variation in i-conc.  

Next, the whole forward current curve is used for training 
(V = 0V to V = 2V) as showed in Figure 8. The n+ and p+ 
concentrations can be predicted accurately. It is worth to 
mention that heavily doped n+ and lightly doped p+ diode 
(e.g. 5×1020cm-3 n+ / 5×1018cm-3 p+) is expected to give 
similar current at V = 2V as the lightly doped n+ and heavily 
doped p+ diode (e.g. 5×1018cm-3 n+ / 5×1020cm-3 p+). 
However, the trained algorithm still can distinguish them 
clearly. This implies that the asymmetric of n+/p+ doping is 
captured in the forward IV curves. Indeed, Figure 9 shows that 
n/p = 5×1020cm-3 / 5×1018cm-3 and n/p = 5×1018 cm-3 / 
5×1020cm-3 give different forward IV shapes. This is probably 

 

 
 

Figure 5: IV’s of the 2000 devices simulated with layer 
concentrations varied. The thicknesses of n+/i/p+ are 

200nm/10nm/200nm. The upper left inset shows the structure 
and the range of variation. The lower inset shows the forward 

IV’s in linear scale. 

 
Figure 6: Scattering plot of n+/i/p+ layers concentrations 

showing their frequencies and correlations used in the study. 
Note that the logarithmic values of the concentrations are 

uniformly distributed. 

 

 
 

Figure 7: Training and validation of doping concentrations 
based on current from V = 1.8V to V = 2V. 

 

 
 

Figure 8: Training and validation of doping concentrations 
based on current from V = 0V to V = 2V. 
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the reason why the machine can distinguish n and p 
concentration from each other. 

As shown in Figure 8, i-layer concentration still cannot be 
modeled well even the full forward IV is used in the training. 
This is because it does not have strong influence on the 
forward IV due to its small thickness.  

Instead of using linear regression with the original 50 input 
features (i.e. currents at voltage 0V to 2V), second order linear 
regression is used in which the number of features is expanded 
to 1326. This gives better fitting in both training and validation. 
However, it is still not good enough (Figure 10).  

Third order linear regression was also tried but it results in 
overfitting in which it gives perfect fitting to the training 
model but bad prediction in validation. Therefore, in order to 
capture the i-layer concentration, more data points are needed.  

V. PROSPECT OF 3D TCAD SIMULATION WITH ML 

The 1D PIN diode has about 300 mesh points. The 
simulation was performed in Intel Xeon E5-2603 with 1 core 
used. The total simulation time of each simulation (process 
and device) is about 90 seconds. As a result, it takes about 2 
days to complete the data generation. A typical realistic 3D 
FinFET IV simulation is between 1 hour to 6 hours (process + 

device) [6]. If computing farm with thousands of CPU are 
available, we anticipate similar study can be completed in <1 
day for a realistic 3D FinFET structure. To reduce simulation 
time, one can reduce the number of training data point or/and 
the range of defect (e.g. i_thickness) variation. Figure 11  
shows that even with 50 (or 200) data points, instead of 1600, 
MLP (or LR) is still very accurate. Moreover, LR can predict 
accurately 50% wider range of i_thickness than the training 
data. These make 3D TCAD augmented ML for defect 
trouble-shooting more feasible. 

VI. CONCLUSIONS 

Using PIN diode with various layer thicknesses and 
concentrations, we demonstrated that TCAD can be used to 
generate sufficient data to train machine to identify the “defect 
value” (variation of layer thickness and concentration) rapidly 
based on IV curves. It is found that 1) data processing before 
ML is critical to obtain accurate results but the type of 
preprocessing depends strongly on domain knowledge (e.g. 
forward and reverse currents require different treatments), 2) 
linear regression gives the best prediction and is better than 
Multi-Layer Perceptron (MLP), 3) the model is able to predict 
structure with thickness out of the range of training data set 
and 4) the full process (TCAD simulation and ML) can be 
completed in less than 2 days with 1 cpu core. We anticipate 
that by using computing farm with thousands of cores, such 
scheme can be implemented for more realistic 3D simulations. 
In certain algorithm, only number of training data as low as 50 
is needed. Such TCAD augmented ML can expedite defect 
trouble-shooting and reverse engineering of semiconductor 
devices. 
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Figure 11: Prediction MSE as a function of the number of 
training samples (Left). Prediction of i_thickness as a 

function of PIN i_thickness (Right). 

 

 
 

Figure 10: Training and validation of doping concentrations 
based on current from V = 0V to V = 2V using second order 

linear regression.  
 

 

 
 

Figure 9: Forward IV of diode with n-/p+ =  (5×1020cm-3 

/5×1018cm-3) and n+/p- = (5×1018cm-3/5×1020cm-3). Doping 
of i-layer is p-type = 1017cm-3. The current at V = 2V are 

scaled to be the same. 
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