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Abstract- In this work, we present a unique approach 
of combining TCAD modelling and machine learning 
to detect the defect locations of a bridging defect in a 
single-fin FinFET. The prediction of the defect loca-
tion is guided by the predictive model consisting of 
Random Forest algorithm which is trained with the 
measureable electrical attributes from the I-V. High 
accuracy in predicting the defect location is achieved 
by the proposed scheme which can further enhance 
the FA success rate, expediting the cycle of design to 
product.  

Keywords– Defect Location Prediction, FinFET, Ma-
chine Learning, TCAD.  

I. Introduction
Failure Analysis (FA) has been a critical process for 

driving semiconductor yield enhancement, reliability, and 
accelerating product development cycle. In today com-
plementary metal-oxide semiconductor (CMOS) technol-
ogy, the number of transistors in an integrated circuits 
(IC) approximately doubles every two years as predicted 
by the Moore’s law [1]. Continued scaling of CMOS de-
vices results in an exponential growth in the number of 
transistors on IC chips. Higher packing density allows 
more logic circuits to be fabricated on a given IC chip ar-
ea which in turn reduces the cost per function.  

However, as transistor dimensions are aggressively 
scaled to the deep sub-micrometer regime and beyond, 
several serious challenges arise, including the short-
channel effects (SCEs) [2]. Short channel effects, such as 
drain induced barrier lowering (DIBL), VTH roll-off, and 
punch-through, significantly increase the OFF-state cur-
rent (IOFF) of highly scaled MOSFETs. To overcome the 
issues associated with SCEs, FinFET devices [3] have 
been introduced in recent years to meet the high perfor-
mance and low power requirement for state-of-the-art 
electronic products. However, the complexity for fault 
identification has significantly increased [4] due to the use 
of FinFET in the electronic industry. Firstly, nanoscale 
non-planar device structures have led to more occurrences 
of Non-Visual Defects (NVD), and this lowers the chance 

of getting to the root cause of failure. Secondly, the com-
plex multi-layer structure of FinFET devices leads to 
more complex Transmission Electron Microscopy (TEM) 
analysis, which is both time consuming and difficult to 
prepare. As such, defect identification workflows are be-
coming increasingly reliant on electrical nanoprobing. 
However, the electrical interactions between the defect, 
the transistors, the complex interconnects can be difficult 
to partition.  In the light of the above, we propose a new 
approach of defect prediction to improve the defect identi-
fication and location success rates. 

The organization of this paper is as follows. Section II 
details the methodology, covering the setup of TCAD 
model, dataset generation and predictive model for ma-
chine learning. In Sections III-A and III-B, the analysis of 
current-voltage (I-V) for a single FIN with different de-
fect configurations is presented. It is followed by the dis-
cussion on the performance of random forest model on 
the prediction of the defect location in III-C. Finally, the 
conclusions are drawn in Section IV. 

II. Approach
Due to rare occurrence of defects in chips, it is ex-

tremely difficult to collect enough statistically-significant 
failing samples. In this context, the defect modeling and 
simulation using calibrated TCAD models can serve as a 
forward prediction model to generate electrical responses 
for many defect-device configurations.  In this work, we 
focus on bridging defects that lead to leakage and electri-
cal shorts.  Guided by actual defect and nanoprobing re-
sults, we built a database of bridging defects in different 
location, size, and the electrical responses. We curated 
key electrical features that may identify the defects. A 3D 
TCAD model of the transistor and local interconnect is 
used to generate labeled data set for the machine training. 
We tested the machine learning model against TCAD-
generated defect-device configurations to evaluate its pre-
diction accuracy. 

Figure 1: FinFET Structure and paramaters for TCAD. 

Figure 2: Gate pattern defect: Planar view (top) and Cross-sectional 
view (bot): (a) STEM Image. (b) TCAD Defect model. 
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A. TCAD Model Setup 

A single-fin FinFET structure is considered in this 
work. It is constructed using Synopsys Sentaurus Struc-
ture Editor Process Emulation method [5], as shown in 
Fig. 1 with the parameters detailed. Correlation between 
the simulated result and actual device failure was validat-
ed with the existing FA cases which involve a gate-
pattern defect on a multi-fin FinFET, as described in [4]. 
The gate pattern defect was introduced into the TCAD 
model as shown in Fig. 2. The simulated drain/source cur-
rent vs gate voltage characteristics (ID/IS-VG) give a quali-
tative resemblance to the IV behavior of actual device. 
  
B. Dataset Generation for Machine Learning 

A single-fin FinFET with a fixed dimension of bridg-
ing defect is considered for this work. The bridging defect 
consists of Titanium Nitride as material. It has a fixed X, 
Y, and Z dimension of 5 nm, 18 nm, 3 nm, respectively. 

As shown in Fig. 3, the defects are distributed at vari-
ous X and Z positions and Y-position is fixed at 30 nm 
and 62 nm, respectively. The region is further broken 
down into 10 sub-regions which are the classes for the 
dataset, as captured in Fig. 4. By employing the models 
used in [4], the electrical characteristics of FinFET with 
introduced defects are simulated using the Synopsys Sen-
taurus device simulator.  

Measureable electrical attributes are subsequently ex-
tracted from the I-V which serve as the feature set in the 
database for the machine learning. Once the dataset is set-
up, the supervised learning algorithm based on Random 
Forest (RF) [6] is adopted for training and predicting the 
defect location based on the electrical attributes provided. 
A total number of 273 samples were consolidated which 

constitute the dataset for training and validating the pre-
dictive model. 

 
C. Predictive Model Setup for Machine Learning 

The machine learning component starts with data pre-
processing step to ensure the integrity of the inputs. Prior 
to training the predictive model, the dataset is split into 
training and testing sets in a random manner [7]. To min-
imize the situation of underfitting or overfitting, cross-
validation approach is used to ensure that the model is 
generalized to an independent or unseen data set. The op-
timal parameters for Random Forest algorithm are ob-
tained using the grid search technique via exhaustive 
searching from the range of parameters specified for the 
best cross validation score.  
 

III. Results and Discussions 
A. I-V: Defect within the FIN (S/D – Channel) 

Firstly, the I-V of defect located between the drain and 
channel inside the FIN [Fig. 5(a)] is investigated. From 
the transfer characteristic shown in Fig. 5(b), the leakage 
current of the defective FIN is higher than that of the con-
trol device. In order to comprehend the trend observed, 
the band diagram at the OFF-state (VG = 0 V, VD = 1 V) is 
extracted in Fig. 6. It is found that the metallic defect 
(TiN) alters the band diagram around the channel and 
drain substantially. The 1-dimensional (1-D) band dia-
gram along the defect reveals that the source barrier sig-
nificantly reduced by the defect compared to the one of 
control device, resulting high leakage current.  

On the contrary, the magnitude of the current level 
appears to be lower than that of the control device for the 
case where the defect is located in between the source and 
the channel [Fig. 7(a)], as demonstrated in Fig. 7(b). 

 
 

Figure 3: Placement of defect in a single-FIN FinFET:  (a) Z-X view. 
(b) Z-Yview. 

 

 
Figure 4: Classification of the regions serving as the classes for the da-

taset. 

 

 
Figure 5: (a) Defect in between the drain and the drain. (b) ID-VG of 
defective FIN and the control device in linear and logarithmic scale. 
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Figure 6: (a) 2-D conduction band (EC).  (b) 1-D band diagram along 
the cut line where the defect is located for control and defective FIN. 
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Similarly, the 2-D and 1-D band diagrams are examined 
to understand the underlying physical insights leading to 
lower current level observed in the defective FIN. The 1-
D band diagram along the defect [extracted at the condi-
tion of VG = 0.6 V and VD = 1 V] in Fig. 8(b) shows that 
the degree of reduction in the source barrier height with 
VG is smaller for the defective FIN. The Schottky barrier 
formed in between the defect in the source and the chan-
nel increases the source barrier. Consequently, smaller 
amount of carriers can surpass the potential barrier, result-
ing in lower current level in the defective FIN.              
 
B. I-V: Defect outside the FIN (S/D – Channel) 

The schematic diagram in Fig. 9(a) shows the defect 
located outside of the FIN electrically connect the drain 
and the gate electrode. The defect forms a resistive con-

ducting path between the drain and the gate electrode. By 
the Kirchhoff’s current law (KCL), the current of drain is 
contributed by the gate and the source current. From the 
current characteristics of the drain (ID) and gate (IG) ver-
sus the VG in Fig. 9(b), both ID and IG exhibit a linear de-
pendence on the potential difference between the drain 
and gate electrode due to the resistive path formed by the 
defect. It is also noted that the magnitude of ID and IG is 
much larger than the source current (IS). The IS follows 
the current characteristic of a transistor [Fig. 9(c)].  

Similar analysis and justifications could be applied in 
the scenario where the defect forms a resistive conducting 
path in between the source and the gate electrode [Fig. 
10(a)]. As depicted in Fig. 10(b), the characteristic of ID is 
similar to that of the control device. On the other hand, 
the magnitude of both IS and IG increases linearly with VG 
due to the flow of current through the resistive conducting 
path between the source and the gate electrode, shown in 
Fig. 10(c).   

 
C. Performance of the Random Forest 

  Based on the Random Forest model with optimal pa-
rameters, high accuracy is achieved with an average accu-
racy score of 0.9612 which is obtained by running 1000 
randomly-split training and testing sets on the model. 
From the evaluation of the confusion matrix (Fig. 11), all 
samples, except for those from region 5, are classified 

 
Figure 7: (a) Defect in between the source and the channel. (b) ID-VG of 

defective FIN and control device in linear and algorithmic scale. 
 
 

 
 

Figure 8: (a) 2-D conduction band (EC).  (b) 1-D band diagram along 
the cut line (A to A’). 
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Figure 9: (a) Transistor Schematic showing that the gate and drain elec-
trode are electrically connected via the defect, as represented by a resi-
stive path (ID→G). (b) ID / IG versus VG of FinFET exhibiting linear de-
pendence on the VG. (c) IS  versus VG follows the conventional current 

characteristic of FinFET. 
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Figure 10: (a) Transistor Schematic: the gate and source electrode shor-
ted electrically by the defect, as represented by a resistive path (IS→G). 
(b) ID  versus VG follows the conventional current characteristic of Fin-
FET. (c) IS / IG versus VG  showing the magnitude of IS and IG increases 

linearly with VG. 

 
Figure 11: Confusion matrix with all features considered. R stands for 

Region. 
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correctly. It also reveals the issue of imbalanced dataset 
with more samples from region 4 and region 9. To cir-
cumvent this issue, the "class_weight" argument in the 
predictive model is set to “balanced” in order to achieve a 
balanced mix of each class in the dataset.  

Among the important features, as depicted in Table II, 
are the features related to the subthreshold swing (Smin, 
Savg, and Smax), threshold voltage (VTH), IS_slope, IGsat, and 
ID_slope. From the perspective of device physics, the dif-
ferentiation for the defect in region 1, 3, 4, 6, 8, and 9 is 
related to the subthreshold swing (Smin). Due to the closer 
proximity of the defects residing in region 1, 3, 6, and 8 to 
the semiconductor area (region 2 and 7), the influence of 
defect in region 1, 3, 6, and 8 on the electrostatic of the 
semiconductor is more pronounced than that of defect in 
region 4 and 9. This leads to different characteristic in the 
subthreshold swing (SS), subsequently affecting the 
threshold voltage (VTH) which is extracted based on con-
stant-current method. This justifies the importance of SS 
and VTH in classifying the regions of defect.  

As discussed in the section III (A) and III (B), the de-
fect located outside of the FIN results in high gate leakage 
current where IS/ID/IG show linear dependence on the VG. 
This explains Is_slope and IGsat being the important fea-
tures that distinguish the defect located outside the FIN 
from the one within the FIN. 

Based upon the importance score of the features, the 
Random Forest model are retrained using the reduced da-
taset which only considers features with an importance 
score higher than 0.05. The distribution of the model ac-
curacy obtained from 1000 runs presented in Fig. 12 illus-
trates that the accuracy is at least 0.86. The average accu-
racy is further improved to 0.9629 relative to the one with 
all features considered. This implies that the selected fea-
tures are sufficient for accurate prediction, reducing the 
noise in the dataset as well as enabling the model pick up 
the relevant features.  
 

IV. Conclusion 
We successfully demonstrated a systematic approach 

for predicting the locations of bridge defect in a single-fin 
FinFET using a combination of TCAD-generated defect 
database and machine learning. The Random Forest algo-
rithm as predictive model is trained with the electrical at-
tributes from the simulated I-V. The proposed scheme 
showcases high accuracy in predicting the defect location. 
It can be easily extended to predict other type of defects 
and more complex circuits, such as multiple-fin FinFET 
transistors and SRAM bitcell structure. Once a properly 
calibrated TCAD transistor model is set up, it can be em-
ployed for predicting real failing device failures. Finally, 
this machine-learning-aided guidance defect detection 
system will further enhance the FA success rate for ad-
vanced nanoscale devices.  
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Table I. Average accuracy score  
Model Average Accuracy  
Random Forest (All features) 0.9612 
Random Forest (Important features only) 0.9629 
 
 

Table II. Features Importance of Random Forest 
Features Importance 
Smin_S (minimum subthreshold swing of IS) 0.122769 
Smin_D (minimum subthreshold swing of ID) 0.113200 
VTH_D (threshold voltage at ID = 1e-8 A) 0.077937 
Savg_D (average subthreshold swing of ID) 0.072414 
Savg_S (average subthreshold swing of IS) 0.071190 
Smax_D (maximum subthreshold swing of ID)  0.071001 
Smax_S (maximum subthreshold swing of IS) 0.060934 
VTH_S (threshold voltage at IS = 1e-8 A) 0.055311 
IS_slope (average slope IS-VG) 0.050797 
IGsat (Drain current at VG = 1V, VD = 1 V ) 0.047725 
IDsat/ISsat (ratio of IDsat and ISsat) 0.044750 
IDsat (Drain current at VG = 1V, VD = 1 V ) 0.038916 
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