
Methodology to Generate Approximate Circuits to
Reduce Process Induced Degradation in CNFET

Based Circuits
Kaship Sheikh, Lan Wei

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

Abstract – A systematic methodology is presented to generate
approximate circuits with fewer nodes and shorter paths to
reduce process induced degradation due to imperfect process
in emerging technologies such as CNFET. In a 16-bit CNFET
adder example, at PCNTopen =5%, two resulted approximate
adders achieve 80.5% and 90.2% circuit-level pass rate with a
penalty of 3.3% and 24.0% in relative logic error,
respectively, in comparison with 12.5% pass rate for the
precision counterpart. The study paves the path to practically
utilize such technology for error-resilient applications.

I. INTRODUCTION
 With superior device performance shown at extremely
small dimensions, emerging low dimensional materials
(LDMs) [1] [2] technologies including Carbon Nanotube
Field Effect Transistor (CNFET) have shown the potential
to replace Si as channel material for future transistors.
Among the LDMs, CNFET seems to be the one close to
high volume manufacturing [3] [4] [5], with development
of wafer-scale process and experimental demonstration of
sub-10nm CNFET being shown having superior device
performance in comparison to Si [6]. However, the current
material and process quality for CNFETs, like other LDMs,
is still far from replacing Si in the near future for
applications requiring precision. However, these
technologies can be suited for error-tolerant applications
such as approximate computing. Approximate computing
being error tolerant relax the need for precise circuits, thus
approximate circuits can be used in place of precise circuits
providing the benefits of energy efficiency, area etc [7] [8].
Furthermore, process induced degradation is less likely to
occur in approximate circuits (ACs), which have simpler
topologies, reduced number of nodes and stages.

Traditional ACs are designed for silicon technology
with mature materials and high-yield process, for the
purposes of reducing delay, energy consumption, area, etc
[7] [8] [9]. However, for the low yield technologies like
CNFETs, ACs can be obtained with the main aim of
reduced process induced degradation by having reduced
nodes/stages and also reduced capacitances at few nodes.

In this paper, we present a systematic methodology to
obtain AC for emerging technology like CNFETs, aiming
to reduce circuit-level degradation due to imperfect process
and materials. With the example of 16-bit CNFET adder,
we show the approximate adders obtained using our
methodology have significantly low process-induced
degradation at reasonable logic accuracy.

The rest of the paper is organized as follows: In section
II, we discuss about the methodology to provide link
between process imperfection to circuit-level performance.

This is followed by our systematic methodology to
generate ACs with reduced process-induced degradation in
section III. In section IV, we discuss about the 16-bit
approximate adders obtained using the methodology in
section III, and also compare approximate adders to the
precise adder in terms of circuit-level performance, logic
accuracy, area.

Fig 1. (From Top to Bottom) (a) Steps to obtain Delay/Slope
LUTs for an input circuit for one arc at given PCNTopen (b) Steps
to calculate passdrive_current for each output node of the circuit at
given PCNTopen [10].

II. EVALUATE PROCESS-INDUCED CIRCUIT-LEVEL
DEGRADATION

Among the emerging LDM based technologies, CNFET
was the first studied and by far the closest to high volume
manufacturing [11] [3]. The popular separation-placement
process has regularly reported removing >99.9% metallic
CNTs causing unwanted short circuits [3] [12]. However,
unwanted open circuit remains a major issue due to missing
CNTs in the channel trenches (thus no effective channel
connecting source and drain). The probability of having a
trench not covered by a CNT (PCNTopen) is in the range of
10% (wide channel) to > 30% (narrow channel) in the
recent reports [11]. High PCNTopen means reduction in drive
current, resulting in two major issues: (1) failure to meet

���������
	�����

���
������

������
������

��������������
����������
����������

������
������

��������������� ���

������
!�"�#��$��

(a)

(b) b)

�����������%���	���������
	�
#
����������	
����	
��

����

���%������������	
����	
��
�#
���������	��������������
��	�

�	�%������
��

��	����������	
����	
��
�
#������
%��%��	
���
#�����%������
��������	��#�
���	�%���
�
%��%���

���������	�	��
���������

���
������� �	

minimum frequency requirement due to increased critical
path delay, and (2) degradation in Static Noise Margin
(SNM).

In [10], we develop a methodology to link process
imperfection including PCNTopen with circuit level
degradation. Delay at particular PCNTopen is obtained by
combining delay look-up table (LUT) results from HSPICE
simulations (using Stanford VS-CNFET model [13]) under
different input transitions (rising/falling) and input slopes
(Fig. 1(a)). For SNM, simulation shows a roughly linear
relationship between reduced drive current (increasing
PCNTopen) and reduced SNM. We define a drive current
criterion based on the simulation: for a certain stage, the
drive current with PCNTopen > 0 in both pull-up or pull-
down paths have to be at least 70% of those with
PCNTopen=0, to ensure SNM of at least 0.25VDD. We define
the circuit level pass rate (passdrive_current) as the probability
of that all the stages along the path from input to output
nodes meeting the drive current criteria. For each PCNTopen
and input vector, passdrive_current at the worst- case output is
obtained (Fig. 1(b)). The results are then averaged for all
100 random input vectors.

III. OBTAIN ACS TO REDUCE PROCESS INDUCED
DEGRADATION

Both delay and passdrive_current are closely impacted by
the number of nodes and stages to reach an output. Hence,
it is critical to have short paths from all inputs to all outputs
to reduce process induced degradation. We define “Linked
Node Number” (LN#) as the total number of nodes
encountered along the paths from all contributing inputs to
an output.

Fig 2. Steps to obtain approximate circuit by replacing the circuit
portions contributing to the critical output in the input circuit.
Steps 1 to 4 are to be repeated to obtain the final approximate
circuit.

The procedure to obtain approximate circuit is carried
in following steps (Fig. 2) with a case study of a 16-bit Han
Carlson tree adder (Fig. 3). We first explain the procedure
where approximations are done for the entire circuit, i.e.,
the entire precision circuit is considered as “Input Circuit”
in the first iteration in Fig 2. (1) Every iteration starts with
the selection of the critical output signal, the one with the
highest LN#. (e.g., S15 in precise Han-Carlson adder in Fig.
3 in the first iteration.) (2) For the signal identified in step
1, approximate Binary Decision Diagram (BDD) is
obtained by applying Cudd_SubsetShortPaths algorithm in
[14]. Here, the unimportant nodes are removed, while
retaining the short paths in the BDD, critical for logic
accuracy consideration. (3) The approximate logic function

(gates) for the critical signal is derived based on the
approximate BDD. (4) Next, the circuit portions in the
input circuit between inputs and the critical output signal
are replaced by the approximate circuit block from step 3,
to obtain the overall approximate circuit. In the next
iteration, the approximate circuit obtained from step 4 of
the previous iteration is now considered as “Input Circuit”.
This is followed by selection of next critical output (e.g
after the approximation of S15, the next critical signal will
be S14 in Fig. 3), and followed by steps 2 to 4. This
procedure is repeated till we reach the outputs in the circuit
that have lesser or equal number of LN# than the
approximate circuits for the previously selected outputs.

Fig 3. Schematics of 16-bit adders: precise Han Carlson Tree adder
(orig), approximate adders with partial-circuit approximation
(app_int), and approximate adder with whole-circuit
approximation (app_out). For app_out, blocks s and b are
described in Fig 4. The vertical broken line on top of s and b in
app_out (full connection not shown to avoid congestion)
represents the bit wise propagate signal (Pi). For the orig circuit,
the dotted circles illustrate the circuit blocks, which are replaced
by approximate circuit block to obtain app_int.

Fig 4. Schematics of 1-bit approximate adder modules (‘b’, ‘s’)
used in app_out. Gi:j, Pi:j, Pi are group generate, group propagate,
and bitwise propagate signal respectively. In the paper, module
‘b’, ‘s’ are either represented by the box symbols or by letters ‘b’,
‘s’.

The circuit obtained above might not meet the logic
accuracy requirement. In this case, only partial circuit is
used as “Input Circuit”, approximated following the
procedure from step (1) to (4) iteratively. Some
intermediate nodes are chosen that the paths after these
nodes are fixed and not included in the approximation

��������	
��	���
������
��������

����

&����
���

�����	����
����	�
	����
�

�
�����������

&������
	�
	������
	�����������	�
	����

��������
	����

���������������

�����
�
������������
��	������

��

��������

����
�������

&������
�
��	����	�
��������

'

(

)

*

���

&��������
	�����
 �
��������������������
	����

���������&�����
��
�+�

�� �� �� �� ��

S2 S3 S13 S14 S15

15 14 13 3 2 1

��

S1

��

S0

0

orig

app_int app_out

12:0 13:0 14:0 15:0

12 13 14 15 2 3 0 1

2:0 3:0 0:0 1:0

Sum Block

S0 S1 S13 S14 S15

15:14

10:0 11:0 12:0 13:0 14:0 15:0

12 13 14 15

15:12

13:12

15:8

11:8

7:0

13:12

13:10

11:10

13:6

9:6

5:0

10 11

11:10

11:8

9:8

11:4

7:4

3:0

8:0

8 9

9:8

9:6

7:6

9:2

5:2

1:0

9:0 0

7:6

6:0 7:0

6 7

7:4

5:4

3:0

5:4

4 5

5:2

3:2

1:0

3:2

2 3

1:0

0 1

4:0 5:0 2:0 3:0 0:0 1:0

Sum Block

S0 S1 S14 S15 S13

ap
pr

ox
im

at
ed

sa

m
e

as
 o

rig

Pi-1:i-1
Pi

Pi

Gi-1:i-2

b

Si

��

Gi:j =Gi:k +Gk�1:j.Pi:k

Pi:j = Pi:k .Pk�1:j

Pi = Ai xor Bi

Gi-1:0

Pi

Si

s

��

�	�

procedure. Instead of just affecting the 1 primary critical
output, these intermediate nodes affect two or more outputs
(e.g. signal G13:0 of orig in the Fig. 3 affects two sum
outputs S14, S15). The circuit obtained this way will be
logically more accurate. However, it might suffer from
increased LN# in comparison to the case where
approximation is done for the whole circuit including paths
all the way till the output nodes.

Fig 5. (Starting from top) Histogram shows %Relative Error for
approximate circuit (a) app_int and (b) app_out. For app_int, >
90% of the input vector combinations have Relative Error < 10%.

Fig 6. LN# for each sum output from (S0) LSB to (S15) MSB
including Cout. The x-axis is the bit position. Bit # (0, …,15, 16)
represent outputs (S0, …, S15, Cout) respectively. Using
approximate circuits (app_int, app_out) significantly reduces the
number of LN#. The critical outputs (with the highest LN#) of
orig, app_int and app_out have LN# of 64, 14 and 11,
respectively.

Regardless whether the approximations are done at
intermediate or output nodes, the approximate circuit
obtained from the proposed procedure would have reduced
number of LN# for the critical output, hence enhanced
passdrive_current. Moreover, with less number of stages in the
critical path and reduced capacitances at nodes due to
simpler topologies, the critical path delay and circuit area
would also be reduced.

IV. EXAMPLE OF CNFET 16-BIT HAN-CARLSON ADDER
 We have taken 16-bit Han Carlson tree adder for case
study. Without the loss in generality, we apply the proposed
methodology to the whole and partial circuit to construct
two 16-bit approximate adders (app_out and app_int,
respectively) (Fig. 3). app_int has all the approximations in
the internal tree structure, without any change in the sum
block which remains the same like the precise version
(orig). The sum block in both orig and app_int is formed by
XOR gates [15] towards their output for generating the sum
signals from S0, S1, … S15. The solid black and grey blocks
in Fig. 3 follow the conventional design for group propagate
and group generate as in [15]. In comparison to the precise
version (orig), app_int has lesser number of group
generate/propagate cells. app_out has the approximations
for each output signal from S2 to S15 (sum outputs) including
Cout (Carry out). app_out is composed of 1-bit adder
modules ‘b’ (Fig. 4) for the sum output S2 to S15, while sum
outputs S0, S1 are composed of ‘s’ block (similar to the
precise version). Table I reports key comparison of the
precise adder and the two approximate adders.

Fig 7. Worst-case Delay (normalized to that of the precise circuit
with PCNTopen = 0%) as a function of PCNTopen. The worst-case
Delay for approximate circuit app_out is lower by 46.7% at
PCNTopen = 40% in comparison to worst-case Delay for precise
adder (orig) at PCNTopen = 0%. For approximate circuit app_int,
the worst Delay at PCNTopen = 40% is also lower (less than 8.1%)
in comparison to precise adder (orig) at PCNTopen.

Logic error - We define the term Relative Error (= |Sapprox
– Sorig|/ Sorig) to represent the relative logic error, where Sorig,
Sapprox are sum value based on the output of precise and
approximate adders respectively. Fig. 5 shows %Relative
Error of app_int and app_out over a set of 1000 random
input vectors. app_int (from partial circuit approximation)
has lower logic error with > 90% of the input vectors
resulting in %Relative Error < 10%. In comparison,
app_out (from whole circuit approximation) have %Relative
Error > 50% for > 20% of input vectors. On average,
%Relative Error of 24.0% and 3.3% are reported for
app_out and app_int respectively (Table I).

Improvement in process induced degradation - Fig. 6
shows that LN# for the critical output (S15) for the orig is
quite high (64 nodes). However, for app_int, LN# =14 is
achieved for critical output, implying significantly less
process induced degradation. For app_out, LN# are further
reduced to 11. Fig. 7 shows that Worst Delay (among set of
100 random vectors) of the critical output for each of the
orig, app_int and app_out. Even at PCNTopen = 40%, the

0 20 40 60 80 100
Relative Error [%]

0

100

200

300

400

500

600

700

800

900

C
o

u
n

t
#

0 20 40 60 80 100
Relative Error [%]

0

50

100

150

200

250

300

350

400

C
o

u
n

t
#

> 90% of input vector
combination result in
Relative Error < 10%

> 20% of input vector
combination result in
Relative Error > 50%

(a)

(b)

Mean = 3.3%

Mean = 24.0%

0 5 10 15
Bit #

0

10

20

30

40

50

60

70

L
in

ke
d

 N
o

d
es

 (
L

N
#)

orig
app_int
app_out

-50 nodes

64 nodes

14 nodes
11 nodes

0 5 10 15 20 25 30 35 40
PCNT

open
 [%]

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

W
o

rs
t

D
el

ay
 (

N
o

rm
al

iz
ed

)
orig
app_int
app_out

46.7%

�	�

Delay for both app_int and app_out are lower than Delay of
orig at PCNTopen = 0% (lower by 8.1% and 46.7%
respectively).

Fig 8. (Starting from top) Mean of %passdrive_current plotted
for critical output of precise adder (orig) and approximate adders
(app_int, app_out) (a) Without transistor upsizing, (b) With
transistor upsizing of 10%-15% while still maintaining total area
smaller than precise circuit area.

Table I: Comparison of 16-bit precise Adder (‘orig’) with
approximate adders (‘app_int’ and ‘app_out’).

* Normalized to delay of orig at PCNTopen = 0%

Fig. 8 shows the plot for Mean of %passdrive_current along
the critical output for orig, app_int, and app_out over set of
100 random vectors. At PCNTopen = 5%, %passdrive_current is
improved to 62.7% and 71.8% with app_int and app_out
respectively, in comparison with 8.4% in the precision
counterpart (Fig. 8(a)). Moreover, with transistor upsizing
by 10%-15%, which still keeps the area of ACs smaller
than that of the precise one, %passdrive_current is above 80%
for both approximate adders at PCNTopen = 5% (90.2% for
app_out and 80.5% for app_int) (Fig. 8(b)). The number is
above 50% with app_out at PCNTopen = 10%, implying the
potential adoption of CNFET technology even at the current
process maturity level.

V. CONCLUSIONS
Aiming at reducing process-induced degradation for

CNFET circuits, we propose and demonstrate a systematic
methodology to generate approximate circuits which could
greatly reduce number of nodes and lengths of paths at a
tolerable relative logic error. Significant improvement in

process induced degradation has been observed in the 16-bit
adder example, implying the great potential to practically
utilize CNFET technology for error-resilient applications.
The methodology can be adapted to other emerging
technology with imperfect process.

ACKNOWLEDGEMENT
We would like to thank Dr. Shu-Jen Han for valuable
discussions. This work is supported by NSERC Discovery
Grant.

REFERENCES

[1] B. Radisavljevic et al., "Single-layer MoS2 transistors,"
Nature nanotechnology, vol. 6, no. 3, p. 147, 2011.

[2] L. Li et al., "High-performance p-type black phosphorus
transistor with scandium contact," ACS nano, vol. 10, no. 4,
pp. 4672-4677, 2016.

[3] S. J. Han et al., "High-speed logic integrated circuits with
solution-processed self-assembled carbon nanotubes,"
Nature nanotechnology, vol. 12, no. 9, p. 861, 2017.

[4] M. M. Shulaker et al., "Carbon nanotube computer," in
Nature, vol. 501, 2013, pp. 526-530.

[5] T.F. Wu et al., "Brain-inspired computing exploiting carbon
nanotube FETs and resistive RAM: Hyperdimensional
computing case study," in Solid-State Circuits Conference-
(ISSCC), 2018 IEEE International, 2018, pp. 492-494.

[6] A.D. Franklin et al., "Sub-10 nm carbon nanotube
transistor," Nano letters, vol. 12, no. 2, pp. 758-762, 2012.

[7] V. Gupta et al., "Low-power digital signal processing using
approximate adders," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no.
1, pp. 124-137, 2013.

[8] S. Venkataramani et al., "SALSA: systematic logic synthesis
of approximate circuits," in Proceedings of the 49th Annual
Design Automation Conference, 2012, pp. 796-801.

[9] M. Soeken et al., "BDD minimization for approximate
computing," in Design Automation Conference (ASP-DAC),
2016 21st Asia and South Pacific, 2016, pp. 474-479.

[10] K. Sheikh, and L. Wei, "Evaluation of Circuit Performance
Degradation due to CNT Process Imperfection," in VLSI
Technology, Systems, and Applications (VLSI-TSA), 2018
International Symposium on, 2018.

[11] B. Kumar et al., "Spatially Selective, High-Density
Placement of Polyfluorene-Sorted Semiconducting Carbon
Nanotubes in Organic Solvents," ACS nano, vol. 11, no. 8,
pp. 7697-7701, 2017.

[12] D. Zhong et al., "Solution-processed carbon nanotubes based
transistors with current density of 1.7 mA/um and peak
transconductance of 0.8 mS/um," in Electron Devices
Meeting (IEDM), 2017 IEEE International, 2017, pp. 5.6.1-
5.6.4.

[13] C.-S. Lee and H.-S. P. Wong. (2015) Stanford Virtual-
Source Carbon Nanotube Field-Effect Transistors Model.
nanoHUB. doi:10.4231/D3BK16Q68.

[14] F. Somenzi, "CUDD: CU decision diagram package release
3.0. 0," University of Colorado at Boulder, 2015.

[15] D. Harris and I. Sutherland, "Logical effort of carry
propagate adders," in Signals, Systems and Computers, 2004.
Conference Record of the Thirty-Seventh Asilomar
Conference on, 2003, pp. 873-878.

0 5 10 15 20
PCNT

open
 [%]

0

20

40

60

80

100

%
 p

as
s d

ri
v

e
c

u
rr

e
n

t

orig
app_int
app_out

0 5 10 15 20
PCNT

open
 [%]

0

20

40

60

80

100

%
 p

as
s d

ri
v

e
c

u
rr

e
n

t

orig
app_int
app_out

 54.2 %

 62.9 %

(a)

(b)

 67.9 %

CKT Mean Relative
Error [%]

Normalized Delay*
[PCNTopen = 40%]

%Passdrive_current
(no upsizing)

[PCNTopen = 5%]

%Passdrive_current
(with upsizing)
[PCNTopen = 5%]

Normalized Area
(no upsizing)

orig 0% 1.78X 8.4% 12.5% 1X

app_out 24.0% 0.53X 71.8% 90.2% 0.78X

app_int 3.3% 0.92X 62.7% 80.5% 0.78X

�	�

