
Dynamical space partitioning for acceleration of
parallelized lattice kinetic Monte Carlo simulations

Takeshi Nishimatsu
Samsung R&D Institute Japan,

Yokohama 230-0027, Japan
t.nishimatsu@samsung.com

Anthony Payet
Semiconductor Research Center,

Samsung Electronics,
Hwaseong 18448, Korea

Byounghak Lee
Samsung Semiconductor Inc.,

3655 N 1st St.,
San Jose, CA 95134, USA

Yasuyuki Kayama
Samsung R&D Institute Japan,

Yokohama 230-0027, Japan

Kiyoshi Ishikawa
Samsung R&D Institute Japan,

Yokohama 230-0027, Japan

Alexander Schmidt
Semiconductor Research Center,

Samsung Electronics,
Hwaseong 18448, Korea

Inkook Jang
Semiconductor Research Center,

Samsung Electronics,
Hwaseong 18448, Korea

Dae Sin Kim
Semiconductor Research Center,

Samsung Electronics,
Hwaseong 18448, Korea

Abstract—A new dynamical space partitioning method is
presented in a parallelized lattice kinetic Monte Carlo (kMC)
simulator to overcome the loss of parallel efficiency found in other
parallelized kMC simulators. The dynamical partitioning of the
simulation cell allows better load balancing through all threads
hence reducing time consuming events during the simulation. The
new method is evaluated against both hypothetical and real cases.
In both cases, minimal differences between serial and parallelized
simulations are found. In real cases, other code optimizations may
be needed to further improve the parallel efficiency.

Index Terms—kMC, nano-scale, FinFET, OpenMP, shared
memory, stochastic, parallelization efficiency

I. INTRODUCTION

Lattice kinetic Monte Carlo (kMC) simulation is a powerful
tool to simulate atomic level semiconductor technology pro-
cesses of nano-scale fabrication. While downsizing of semi-
conductor devices is steadily pushed on, atomistic simulations,
including kMC, have become more and more imperative.
Moreover, among many atomistic simulation methods, kMC
is almost the only method which can simulate stochastic
phenomena such as growth and diffusion in realistic system
sizes (larger than 10× 10× 10 nm3) and realistic time scales
(minutes or hours).

To accelerate such kMC simulations of nano-scale semi-
conductor devices, several parallelization approaches for kMC
have been introduced, tested, and practically used. Most paral-
lelization approaches of kMC assume that possible events are
distributed uniformly in simulation cells and parallelization
efficiency become maximum in the cases of uniform distribu-
tion. However, especially in process simulations of large-scale
devices such as array of FinFETs, sites having possible events
(diffusing dopant atoms, surface sites of epitaxial growth, etc.)

can be initially localized in simulation cells. In such localized
cases, the simulation speed slows down and the accuracy
deteriorates due to poor load balancing of the parallelization.

In this paper, we propose a new dynamical space parti-
tioning method to overcome localized events issue. We apply
our new dynamical space partitioning method to two earlier
parallelization approaches of kMC, Ref. [1] and [2].

II. METHODOLOGY

The lattice kMC method is a Monte Carlo method computer
simulation intended to simulate the time evolution of events
occurring in a crystal lattice. Each event is assumed to have
rate (or frequency) pi of occurrence, where i is the index of
each event. The general serial kMC algorithm using a binary
tree as a rate table, as described in Sec. 4.4 of Ref. [1],
is as following: (1) Generate two random numbers r1 and
r2 ∈ (0, 1], (2) Advance the clock Δt = 1

ps
log 1

r1
, where ps

is the total cumulative rate calculated in previous iteration,
(3) Search in the binary tree for the smallest j such that
r2ps ≤

∑j
i=1 pi, (4) Perform the jth event, (5) Compute rate

pi of affected events, (6) Percolate changed rates up to the top
of the binary tree, yielding ps =

∑N
i=1 pi, (7) Repeat this loop

until the requested simulated time, tsim. Therefore, The kMC
time evolution has inherently serial nature and parallelization
of kMC requires approximation.

In 2009, Slepoy et al. invented simple but efficient algorithm
for parallelized kMC [1]. Using Message Passing Interface
(MPI) and dividing a simulation cell into sectors, their kMC
loop is: (1) Update states of boundary sites adjacent to the
local sector, (2) Update rates of sites in local sector, (3) Run
kMC on sectors until tstop, (4) Tell updated states in boundary
sites to neighboring sectors (5) Advance the clock tstop and

���������	�	��
���������

���
������� ���

repeat this loop until the requested simulated time tsim. Good
efficiency of this parallelized algorithm is coming from step (3)
in which ordinary kMC loops are repeated and multiple events
are performed in a sector locally. However, localized events
cause imbalance of the number of events executed in tstop.
Consequently, the parallelized computation speed slows down
and results become less accurate. In this paper, we identify
this algorithm as “TimeStop” approach.

In 2015, Martin-Bragado et al. reported a parallelization
algorithm [2] of kMC for shared memory computers using
OpenMP. They sliced a simulation cell into m domains,
where m is the number of parallel threads, then, sliced each
domain into three subdomains. With this idea, they success-
fully avoided conflicts during the update of event tables of
neighboring subdomains as: (1) The total cumulative rate for
each subdomain I , having NI events to simulate, is built
as PI =

∑NI

i=1 pi, (2) A maximum of all the cumulative
rates is computed: Pmax ≥ maxPI , (3) Null events rates
are assigned to each subdomain: pnullI = Pmax − PI , (4) A
random number is used to choose one subdomain from three
subdomains, (5) For each chosen subdomain, one event is
picked up proportionally to its rate and executed, (6) Advance
the clock Δt = 1

3Pmax
log 1

r , where r ∈ (0, 1] is a random
number, (7) This loop is repeated until tsim is reached. In
this paper, we identify this algorithm as “OneStep” approach.
This “OneStep” parallelization approach is more robust but
slower than the “TimeStop” approach. Indeed, step (5) is the
part done in parallel, but the creation and annihilation of the
parallel threads have a equivalent or higher computational cost
than the execution of an event in a subdomain and per kMC
loop. It should be also noted that step (2) might not be done
in parallel, because finding maximum among only 3m of PI

in parallel is expensive in the shared memory computer. Due
to the step (3), imbalance of PI causes large null events rates
at some subdomains and execution of null events is the origin
of slowness of this approach.

III. DYNAMICAL SPACE PARTITIONING

In this paper, a simulation cell is partitioned into m sliced
domains and each domain is sliced into three subdomains,
where m is the number of parallel OpenMP threads, as
proposed in Ref. [2] and as schematically illustrated in
Fig. 1(a). This partitioning method can be used not only with
the “OneStep” approach, but also with “TimeStop”. Using
binary trees as event tables for each subdomain, the total
cumulative rates per subdomain is calculated as illustrated in
Fig. 1(b). In the case of equi-space partitioning, as illustrated
in Fig. 1(a) and (b), if the active sites are localized in the
simulation cell, the total rates of each subdomain becomes
imbalance. As mentioned in Sec. II, such imbalance may
cause degradations in computational speed and accuracy in
both “TimeStop” and “OneStep” approaches. To avoid such
deceleration and inaccuracy, we introduce a dynamical space
partitioning as depicted in Fig. 1(c) and (d). According to
the previously calculated total rates, subdomain boundaries are
dynamically adjusted to equalize total rates. Such adjustment

Fig. 1. (a) A lattice kMC simulation cell is schematically illustrated. Equi-
space partitioning for m = 2 threads computation is drawn. One OpenMP
thread has one domain. Each domain is divided into three subdomains. The
active sites are localized in the cell as indicated with red elliptic region. (b)
Due to the localization, total rates of subdomains are different. (c) By adjusting
domain boundaries, (d) subdomains have equal total rates as indicated with
green areas divided with dashed vertical lines.

or repartitioning can be easily realized and implemented by
using ordered indexes of sites from one end to another end
of the simulation cell. Another advantage of the use of such
ordered index is separation of time evolution and partitioning
algorithms from an object structure of kMC simulation on
which they operate.

IV. TECHNICAL DETAILS

Recently non-uniform memory access (NUMA) architec-
ture has been widely used for shared-memory multiprocessor
computers. As shown in Fig. 2, in a shared-memory computer,
there are several slots—generally two or four slots—of CPUs
and each CPU contains many cores. In the two parallel algo-
rithms described above, one core handles one thread and one
thread has three subdomains. the rate tables of each subdomain
is placed on a “local” memory of NUMA, but occasionally
a thread has to update the adjacent rate table placed on a
“remote” memory, if an event occurs at the boundary between
two subdomains. Generally, access to the “remote” memory
required longer time than access to the “local” one, because
the “remote” access has to go through an inter connection
between CPU s. Therefore, with these parallel algorithms, it is
difficult to get good parallelization efficiency beyond a single
CPU.

The Array of Structures (AoS) approach is often imple-
mented in simulation codes due to its handiness and flexibility
[3]. For a class of problems including kMC, however, the
performance of Structure of Arrays (SoA) is much better
than that of AoS because SoA allows efficient use of vector
units and cache of modern CPUs. Moreover, in lattice kMC
simulations, it is found that placing attributes of neighboring
sites close in memory gives higher performance than random
placement. For this purpose, if the material has a diamond
lattice (e.g. in the case of silicon) and the direction of slice
can be determined arbitrary (e.g. in the case without periodic
boundary condition), slice parallel to one of {111} surfaces
and indexing along the silicon zigzag network could bring
good performance.

���

CPU Chip
cores

memctrl
Slot 0

CPU Chip
cores

memctrl
Slot 1

inter connect

DRAM DRAM
fast slow

rate tables

Fig. 2. Schematic illustration of Non-uniform memory access (NUMA)
architecture. In a shared-memory computer, there are several slots (here, 2
slots) of CPUs and each CPU contains many cores (8 cores). CPUs are
connected with inter connection(s) with each other. A CPU is connected to
DRAM through a memory controller and memory channels. Read and write
access to a rate table on the “local” DRAM is faster (blue thick solid arrow)
than that of “remote” (thin red dashed arrow).

Fig. 3. Schematic illustration of an example case of active sites (red L-
shaped regions) are localized on planes parallel to the slice planes. (a) Before
partitioning. (b) After partitioning, subdomain(s) might become thinner than
5 bond lengths.

Finally, a limitation of automatic repartitioning is introduced
because each slice has to be thicker than the diffusion jump
and interaction distance (typically about 5 bond lengths). In
very limited number of cases when active sites are localized
on planes parallel to the simulation cell slice planes, this
limitation shows up, as shown in Fig. 3. Typically, these
situations can be avoided by proper choice of slicing direction.

V. EVALUATION OF PARALLELIZATION EFFICIENCY

To evaluate parallelization efficiency of “TimeStop” and
“OneStep” approaches and the repartitioning, simple hypo-
thetical dopant diffusion simulations are performed with one
18-core Intel Xeon Gold 6154 CPU. A simulation cell of
512 × 64 × 63 simple cubic lattice with periodic boundary
condition is assumed and a bulked 384 × 64 × 3 = 73,728
dopant atoms are initially placed at the center of the cell.
Therefore, initially, there are regions without dopant atoms
at the two ends of the simulation cell in ±x-directions. The
dopant atom can be diffused to 6 directions with diffusion rate
of 1 T−1, where T is arbitrary unit of time. Consequently,
along a kMC simulation, dopant atoms gradually blot from
the initial center region into ±x- and ±z-directions of the
simulation cell. Each lattice kMC simulation is performed
until tsim = 500 T is reached. For the two parallelization
approaches, equi-space, initial-only and dynamical partitioning
are tested. Initial-only means that repartitioning is performed
only once in the beginning of a simulation. For dynamical

1/16
1/14
1/12
1/10
1/8
1/7
1/6
1/5
1/4

1/3

1/2

1

1 2 4 8 16

t m
 /

 t
1

m, the number of threads

OneStep
initial partitioning OneStep

dynamical partitioning OneStep
Serial

TimeStop
initial partitioning TimeStop

dynamical partitioning TimeStop
ideal

Fig. 4. m-thread parallelized computational times tm are compared to serial
computational time t1 (red circle). For two parallel algorithms “OneStep”
(three purple lines with + marks) and “TimeStop” (three green lines with
× marks), equi-space (thin dashed lines), initial-only (thick dotted lines) and
dynamical (thick solid lines) partitioning are tested. A thin black straight line
shows ideal parallelized efficiency.

partitioning, repartitionings to equalize total rates of each
subdomain are performed 5 times at 0, 101, 202, 303, 404 T
according to the total rates of previous iteration. tstop =
10−2 T is used for every “TimeStop” algorithm simulations.
To bind OpenMP threads to cores within one CPU, numactl
Linux command is used. The numbers of executed diffusion
events are around 208 million within difference less than
1%. One-core serial calculation (red circle in Fig. 4) takes
t1 = 345 s. As shown in Fig. 4, the “TimeStop” parallelization
approach has better efficiency compared to that of “OneStep”
for all equi-space, initial-only and dynamical partitioning.
Under this simulation condition and for both parallelization
approaches, initial-only and dynamical partitioning improves
parallelization efficiency up to m = 7–10 threads. However,
for m larger than 10–12 threads, efficiency of initial-only
partitioning get worse, while dynamical partitioning keeps
better efficiency than equi-space partitioning. This is because,
in the case of initial-only partitioning with large m, two
subdomains at two ends, i.e. I = 1 and I = 3m subdomains,
are partitioned much larger than other subdomains in the
beginning of a kMC simulation, because there are no dopant
atoms in the ends initially. Along the simulation, dopant atoms
are diffused into the two large end subdomains, but end
subdomains are never repartitioned, consequently imbalance in
total rates, i.e. load imbalance, get bigger and bigger. Finally,
it should be noted that determination and optimization of the
period of repartitionings and tstop are remaining future tasks.

VI. PRACTICAL EXAMPLE OF SEMICONDUCTOR PROCESS
SIMULATION

To confirm applicability of the partitioning method in par-
allelized lattice kMC simulations on practical semiconductor
processes, we tested “OneStep” approach with epitaxial silicon
growth at the source/drain (S/D) of three array of FinFETs

��

(a)

(b)

(c)

Fig. 5. (a) Initial configuration of recessed fins of FinFETs before epitaxial
silicon growth to make sources/drains (S/D). Three fins are cut out from the
center of this configuration. Growth starts from inside U-shaped structures.
(b) Epitaxially grown connected three S/D simulated with a serial simulation.
(c) That with a 4-times repartitioning parallelized simulation with 6 threads.
In (a)-(c), surfaces surrounding silicon atoms are drawn.

in a 54 × 90 nm3 simulation cell, as an example, as shown
in Fig. 5. Other conditions of this epitaxial growth simulation
are: at 700◦C, during 600 s, up to the second nearest neighbors
are counted for the determination of event rates, stuck atoms
are assumed not to migrate on the growing surface, etc.
Regrettably, The “TimeStop” parallelization approach and data
structure optimization described in Sec. IV have not yet been
implemented in our in-house simulator.

Timing results are plotted in Fig. 6. One-core serial calcu-
lation (red circle in Fig. 4) takes t1 = 45 s. The numbers
of executed epitaxial growth events are around 4.59 million
within difference less than 1%. Unfortunately, the reparti-

0.5

0.6

0.8

1.0

1.2

1 2 3 4 5 6

t m
 /

 t
1

m, the number of threads

4−times repartitioning
twice repartitioning

initial−only repartitioning
equi−space partitioning

serial
ideal

Fig. 6. m-thread parallelized computational times tm are compared to serial
computational time t1 (red circle). “OneStep” parallel algorithm is used. equi-
space (purple thin dashed line), initial-only (green thick dotted line) and twice
(sky-blue thick solid line) 4-times (yellow chain line) partitioning are tested.
A thin black straight line shows ideal parallelized efficiency.

tioning results do not have better parallelization efficiency
compared to the equi-space partition one. This is because
reconstruction of rate table in repartitioning is time consuming.
We expect that data structure optimization described in Sec. IV
is also required to improve parallel efficiency. However, as
shown in Figs. 5 (b) and (c), we can get identical results in two
with/without repartitioning epitaxial growth lattice kMC sim-
ulations. Therefore, we believe that, with future optimization,
the repartitioning method is effective to speed-up parallelized
lattice kMC simulations of practical semiconductor processes.

VII. SUMMARY

In this work, we have proposed a new dynamical space
partitioning method which can speed up parallelized lattice
kMC simulations. Capability of the new partitioning method
is confirmed with two earlier parallelization approaches using
a simple hypothetical dopant diffusion. Technical details on
NUMA and data structures for efficient parallelization are
discussed. It has been also shown that, in certain cases, not
only initial partitioning but also occasional dynamical parti-
tionings is effective. Applicability of the partitioning method
is also confirmed with an example of epitaxial growth at S/D
of FinFETs, though optimization of the method is left as a
remaining issue.

REFERENCES

[1] S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare,
G. Wagner, E. Webb, X. Zhou, C. G. Cardona, and A. Slepoy, “Crossing
the mesoscale no-man’s land via parallel kinetic Monte Carlo,” Sandia
Report, vol. SAND2009-6226, 2009.

[2] I. Martin-Bragado, J. Abujas, P. L. Galindo, and J. Pizarro, “Synchronous
parallel Kinetic Monte Carlo: Implementation and results for object
and lattice approaches,” Nuclear Instruments and Methods in Physics
Research Section B, vol. 352, pp. 27–30, 2015.

[3] H. Homann and F. Laenen, “SoAx: A generic C++ structure of arrays for
handling particles in HPC codes,” Computer Physics Communications,
vol. 224, pp. 325 – 332, 2018.

���

