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Abstract—Topography simulation of chemical-vapor-
deposition (CVD) trench filling has been advanced as a tool for 
designing fabrication processes of high-voltage 4H-SiC 
superjunction devices. In the longitudinal section of filled stripe 
trenches, an experimentally observed dip, which had not been 
well reproduced with a previous technique using a fixed surface 
free energy �, came to be qualitatively reproduced by including 
an orientation dependence of �. 
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I.� INTRODUCTION 
A 4H-SiC superjunction (SJ) power device [1], in which 

alternating p- and n-type columns are located in a drift layer 
[2], is expected to have the lowest specific on-resistance 
among wide-bandgap unipolar devices with breakdown voltage 
BV exceeding about 4 kV [3]. Although ion implantation has 
been used to fabricate 0.8�1.5 kV SiC SJ devices [4�6], 
chemical-vapor-deposition (CVD) trench filling, whose growth 
window was empirically obtained [7], should become the key 
technique for higher-BV SJ devices. With respect to trench 
filling of Si, ballistic-transport models have been used [8�11] 
because of large Knudsen number in low pressure CVD [12, 
13]. In the case of CVD trench filling flowing 
SiH4+C3H8+HCl+H2, on the other hand, subatmospheric 
pressure (0.1�0.7 atm [7, 14�16]) has been used because of 
much larger equilibrium vapor-phase concentration of Si at 
higher growth temperature [17]. Based on a continuum-

diffusion model [18�20], the reported cross section of 3-�m-
pitch stripe trenches [that were formed on a (0001) substrate 
(i.e., A-A’ in Fig. 1) and were filled under the conditions listed 
in Table I] [7] has been numerically reproduced up to 2 h by 
including the Gibbs�Thomson effect on the most dominant Si-
containing growing species (i.e., SiCl) under a C-rich 
atmosphere: 

 CSiCl
e(r, Ts) = CSiCl

e(�, Ts) exp[�Vm/RTsr], (1) 

where CSiCl
e is the equilibrium vapor-phase concentration of 

SiCl molecules that are in contact with a surface (with a radius 
of curvature r) at temperature Ts, R is the ideal gas constant, Vm 
is the molar volume of 4H-SiC, and the surface free energy � 
was used as a fitting parameter (i.e., 0.1 J/m2) [3].  

With respect to the longitudinal section (i.e., B-B’ in Fig. 
1), on the other hand, an experimentally observed dip [Fig. 
2(b)] has yet to be well reproduced with Eq. (1) [Fig. 2(a)]. In 
the case of Si trench filling in low pressure CVD, such a dip is 
unlikely to appear because a filling layer uniformly  grows  on 

 
Fig. 1.� Schematic perspective view of 3-�m-pitch SiC trenches formed along 
the [11-20] direction [3, 7]. 
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TABLE I. � CVD GROWTH CONDITIONS USED FOR TRENCH FILLING [3, 7] 

SiH4 7.5 sccm 

C3H8 2.5 sccm 

HCl 0.3 slm 

H2 80 slm 

trimethylaluminum 1.28 �mol/min 

pressure 0.38 atm 

temperature 1873 K 

 

both the bottom and sidewalls of trenches [21]. Numerical 
reproduction of a dip in the longitudinal section is therefore the 
specific challenge faced by CVD in the small-Knudsen-number 
regime. 

4H-SiC has polar faces, i.e., (000-1) [Fig. 3(a)] and (0001) 
[Fig. 3(b)]; � should thus depend on the crystallographic 
orientation [i.e., � in Fig. 3(c)]. However, topography 
simulation of 4H-SiC CVD trench filling has never been 
carried out including a � dependence of �. Accordingly, in this 
study, �-dependent � was first included in the topography 
simulation to reproduce a dip in the longitudinal section. 

 

 

Fig. 2.� Longitudinal sections (B-B’ in Fig. 1) of SiC trenches (a) simulated 
with Eq. (1) using a constant � of 0.1 J/m2 and (b) observed using the same 
specimen reported in [3, 7]. The dark lines in (b) are intentionally grown n-
type marker layers between each hour of growth. 

 

 

Fig. 3.� (a) (b) Typical crystal planes and (c) definition of �. 

II.� MODELING 

A. Modeling of an orientation dependence of surface free 
energy 
The dependence of � on � in spherical polar coordinates 

was neglected because of the similar crystal shapes observed 
for 4H-SiC grown at 1893 K on mesas along the [11-20] and 
[1-100] directions [22]. In the case 0o � � � 90o, surfaces with � 
of 0o and 90o only were reported to be singular (i.e., having no 
kinks where atoms are contained in a crystalline phase) [22]; 
�(�) is therefore expressed as [23] 

 �(�) = �(0o) cos� + �(90o) sin� (0o � � � 90o). (2a) 

If we assume a surface with � of 180o is also singular, the 
following equation is established. 

 �(�) = �(90o) cos� + �(180o) sin� (90o � � � 180o). (2b) 

According to a first-principles calculation on diamond and 
silicon, � decreases with the increase of hydrogen coverage 
[24]. Since hydrogen binds more strongly to 4H-SiC (000-1) 
(i.e., � = 180o) than to 4H-SiC (0001) (i.e., � = 0o) [25, 26], it is 
reasonable to assume that �(180o) is lower than �(0o). Here we 
tentatively assume �(180o) = 0 because a surface with � = 180o 
is hard to appear in trenches formed on (0001) substrates.  

Since the growth rate Rg on a surface with � = 90o was 
reported to be the same as Rg on a surface with � = 0o [22], 
�(90o) was reasonably assumed to be equal to �(0o). In this 
study, �(0o) was varied from 0.03 to 0.05 J/m2, as shown in Fig. 
4. 

 
Fig. 4.� Assumed � as a function of �. 

 

B. Modeling of a SiC-CVD Reactor 
A horizontal hot-wall reactor was modeled based on 2D 

computational fluid dynamics [27]. The chemical reactions 
considered are listed in Table II. Under the growth conditions 
listed in Table I, C-to-Si ratio was calculated to be larger than 
unity at the growth position (Fig. 5), showing vapor-phase 
diffusion of Si-containing growing species limited the growth 
of SiC. As stated in Section I, SiCl is most dominant near the 

		�



wafer surface among the Si-containing growing species (Fig. 
6). 

Boundary-layer thickness LL (Fig. 7) was determined from 
the minimum height at which the incoming SiCl flux was 
constant; namely, LL = 1.5 mm (Fig. 6). The gas-phase 
concentration of SiCl molecules at the top of the boundary 
layer (CSiCl

0 = 61.3 �mol/m3) and the equilibrium gas-phase 
concentration of SiCl molecules that are in contact with a plane 
surface [CSiCl

e(�, 1873 K) = 54.3 �mol/m3] were used as the 
boundary conditions (Fig. 7) for topography simulation. 

 

TABLE II. � CHEMICAL REACTIONS CONSIDERED 

1 C3H8 � CH3 + C2H5 

2 C2H5 + H � 2 CH3 

3 CH3 + H2 � CH4 + H 

4 C2H5 � C2H4 + H 

5 2 CH3 � C2H4 + H2 

6 C2H4 � C2H2 + H2 

7 SiH4 � SiH2 + H2 

8 SiH2 � Si + H2 

9 SiH2 � SiH + H 

10 H2 � 2 H 

11 Si + HCl � SiCl + H 

12 SiCl � Si + Cl 

13 SiCl + Cl � SiCl2 

14 2 HCl � H2 + 2 Cl 

 

 

 

Fig. 5.� Calculated C-to-Si ratio and temperature and reactive/nonreactive 
boundary conditions. Growth conditions are listed in Table I. 

 

 

Fig. 6.� Concentrations of growing species at growth position as a function of 
height from wafer surface. Growth conditions are listed in Table I. 

 

 

Fig. 7.� Schematic illustration of the boundary layer determined by 
computational fluid dynamics. 

 

C. Modeling of a Growing Surface 
The surface-reaction rates for SiC CVD based on SiH4 and 

C3H8 are so fast [28] that Rg in trenches can be determined by 
the SiCl-diffusion flux as 

 �f/�t + Rg(�f/�x + �f/�y + �f/�z) = 0 and (3) 

 Rg = [−DSiCl
eff�(CSiCl�growing surface−CSiCl

e(r))/�n]/Vm, (4) 

where f(x, y, z) is a level-set function defined as a function of 
the signed distance from the point (x, y, z) to the growing 
surface, DSiCl

eff is effective SiCl diffusivity determined from 
the measured growth rate on a simultaneously grown bare 
wafer (i.e., 0.020 �m/min), and n is the vector normal to the 
growing surface. Eqs. (1)�(4) were solved using technology 
computer-aided-design (TCAD) (Victory Process [29]) that use 
the high-order nonoscillatory schemes for Hamilton-Jacobi 
equations [30]. 

			



III.�TOPOGRAPHY SIMULATION 
Figure 8 compares the simulated longitudinal (B-B’ in Fig. 

1) and cross (A-A’ in Fig. 1) sections of 3-h grown 4H-SiC 
trenches with the experimentally observed ones [3, 7]. In the 
case �(0o) = 0.03 J/m2 (doted curve in Fig. 4), a void defect 
appears in the cross section, which does not agree with the 
experimental observation. In the case �(0o) = 0.05 J/m2 (dashed 
curve in Fig. 4), no void defects appear in the cross section; 
however, a dip experimentally observed in the longitudinal 
section is not reproduced. 

In contrast, both an experimentally observed dip in the 
longitudinal section and a void-free cross section are 
qualitatively reproduced when �(0o) is 0.04 J/m2 (solid curve in 
Fig. 4). 

 
Fig. 8.� Experimentally observed [3, 7] and numerically simulated 
longitudinal (B-B’ in Fig. 1) and cross (A-A’ in Fig. 1) sections of 4H-SiC 
trenches grown for 3 h under the conditions listed in Table I. 

IV.�DISCUSSION 
While the longitudinal (B-B’ in Fig. 1) section was 

qualitatively reproduced with �(0o) of 0.04 J/m2, the cross (A-
A’ in Fig. 1) section was better reproduced with �(0o) of 0.05 
J/m2 (Fig. 8). Such difference in �(0o) suggests that inclusion 
of  �(�, �) should further improve a three-dimensional 
reproduction of the experimentally observed topography of 
filled 4H-SiC trenches. 

V.� SUMMARY 
By including a � dependence of � in a TCAD topography 

simulator, both longitudinal and cross sections of 4H-SiC stripe 
trenches filled by subatmospheric CVD were qualitatively 
reproduced. Development time for 4H-SiC SJ power devices is 
to be reduced by the developed topography simulation 
combined with subsequent TCAD-based process and device 
simulation. 
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