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Abstract—Topography  simulation of chemical-vapor-
deposition (CVD) trench filling has been advanced as a tool for
designing fabrication processes of high-voltage 4H-SiC
superjunction devices. In the longitudinal section of filled stripe
trenches, an experimentally observed dip, which had not been
well reproduced with a previous technique using a fixed surface
free energy », came to be qualitatively reproduced by including
an orientation dependence of p.
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[. INTRODUCTION

A 4H-SiC superjunction (SJ) power device [1], in which
alternating p- and n-type columns are located in a drift layer
[2], is expected to have the lowest specific on-resistance
among wide-bandgap unipolar devices with breakdown voltage
BV exceeding about 4 kV [3]. Although ion implantation has
been used to fabricate 0.8—1.5 kV SiC SJ devices [4-6],
chemical-vapor-deposition (CVD) trench filling, whose growth
window was empirically obtained [7], should become the key
technique for higher-BV SJ devices. With respect to trench
filling of Si, ballistic-transport models have been used [8—11]
because of large Knudsen number in low pressure CVD [12,
13]. In the case of CVD trench filling flowing
SiH4+C3Hs+HCI+H,, on the other hand, subatmospheric
pressure (0.1—0.7 atm [7, 14—16]) has been used because of
much larger equilibrium vapor-phase concentration of Si at
higher growth temperature [17]. Based on a continuum-
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diffusion model [18—20], the reported cross section of 3-pum-
pitch stripe trenches [that were formed on a (0001) substrate
(i.e., A-A’ in Fig. 1) and were filled under the conditions listed
in Table I] [7] has been numerically reproduced up to 2 h by
including the Gibbs—Thomson effect on the most dominant Si-
containing growing species (i.e., SiCl) under a C-rich
atmosphere:

Csjc]e(l”, Ts) = CSjCle(OO, TS) EXp[yVm/RTSV], (1)
where Csici® is the equilibrium vapor-phase concentration of
SiCIl molecules that are in contact with a surface (with a radius
of curvature ) at temperature T, R is the ideal gas constant, Vi,
is the molar volume of 4H-SiC, and the surface free energy y
was used as a fitting parameter (i.e., 0.1 J/m?) [3].

With respect to the longitudinal section (i.e., B-B’ in Fig.
1), on the other hand, an experimentally observed dip [Fig.
2(b)] has yet to be well reproduced with Eq. (1) [Fig. 2(a)]. In
the case of Si trench filling in low pressure CVD, such a dip is
unlikely to appear because a filling layer uniformly grows on
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Fig. 1. Schematic perspective view of 3-um-pitch SiC trenches formed along
the [11-20] direction [3, 7].



TABLE L CVD GROWTH CONDITIONS USED FOR TRENCH FILLING [3, 7]

SiH, 7.5 sccm
C3Hs 2.5 scem
HCI 0.3 slm
H, 80 slm

trimethylaluminum 1.28 umol/min

pressure 0.38 atm

temperature 1873 K

both the bottom and sidewalls of trenches [21]. Numerical
reproduction of a dip in the longitudinal section is therefore the
specific challenge faced by CVD in the small-Knudsen-number
regime.

4H-SiC has polar faces, i.e., (000-1) [Fig. 3(a)] and (0001)
[Fig. 3(b)]; y should thus depend on the crystallographic
orientation [i.e., 6 in Fig. 3(c)]. However, topography
simulation of 4H-SiC CVD trench filling has never been
carried out including a @ dependence of y. Accordingly, in this
study, 6-dependent y was first included in the topography
simulation to reproduce a dip in the longitudinal section.

[0001]

[1120]

(a) (b)

Fig. 2. Longitudinal sections (B-B’ in Fig. 1) of SiC trenches (a) simulated
with Eq. (1) using a constant y of 0.1 J/m* and (b) observed using the same
specimen reported in [3, 7]. The dark lines in (b) are intentionally grown n-
type marker layers between each hour of growth.
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Fig. 3. (a) (b) Typical crystal planes and (c) definition of 6.

II. MODELING

A. Modeling of an orientation dependence of surface free
energy

The dependence of y on ¢ in spherical polar coordinates
was neglected because of the similar crystal shapes observed
for 4H-SiC grown at 1893 K on mesas along the [11-20] and
[1-100] directions [22]. In the case 0° < § < 90°, surfaces with
of 0° and 90° only were reported to be singular (i.e., having no
kinks where atoms are contained in a crystalline phase) [22];
y(60) is therefore expressed as [23]

7(6) = (0°) cosd + y(90°) sinf (0° < 4 < 90°). (2a)

If we assume a surface with 6 of 180° is also singular, the
following equation is established.

2(6) = p(90°) cosd + y(180°) sind (90° < 6 < 180°). (2b)

According to a first-principles calculation on diamond and
silicon, y decreases with the increase of hydrogen coverage
[24]. Since hydrogen binds more strongly to 4H-SiC (000-1)
(i.e., @ = 180°) than to 4H-SiC (0001) (i.e., & = 0°) [25, 26], it is
reasonable to assume that y(180°) is lower than p(0°). Here we
tentatively assume p(180°) = 0 because a surface with 8 = 180°
is hard to appear in trenches formed on (0001) substrates.

Since the growth rate R, on a surface with 8 = 90° was
reported to be the same as R, on a surface with 6 = 0° [22],
7(90°) was reasonably assumed to be equal to y(0°). In this
study, y(0°) was varied from 0.03 to 0.05 J/m?, as shown in Fig.
4.
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Fig. 4. Assumed y as a function of 6.

B. Modeling of a SiC-CVD Reactor

A horizontal hot-wall reactor was modeled based on 2D
computational fluid dynamics [27]. The chemical reactions
considered are listed in Table II. Under the growth conditions
listed in Table I, C-to-Si ratio was calculated to be larger than
unity at the growth position (Fig. 5), showing vapor-phase
diffusion of Si-containing growing species limited the growth
of SiC. As stated in Section I, SiCl is most dominant near the



wafer surface among the Si-containing growing species (Fig.
6).

Boundary-layer thickness L. (Fig. 7) was determined from
the minimum height at which the incoming SiCl flux was
constant; namely, Lt 1.5 mm (Fig. 6). The gas-phase
concentration of SiCl molecules at the top of the boundary
layer (Csict” = 61.3 pumol/m?®) and the equilibrium gas-phase
concentration of SiCl molecules that are in contact with a plane
surface [Csici(o0, 1873 K) = 54.3 umol/m?] were used as the
boundary conditions (Fig. 7) for topography simulation.

TABLE IL CHEMICAL REACTIONS CONSIDERED
1 C3Hg «» CH; + C,Hs
2 CoHs + H <> 2 CH;j
3 | CHs+Hy < CH;+H
4 CoHs & CHy + H
5 2 CH; <> C,Hy + Hy
6 CoHy < CH, + Hy
7 SiH, «<» SiH, + H,

8 SiH, <> Si+ H,

9 SiH, <> SiH + H
10 Hy<~2H
11 Si+ HCl « SiCl+ H
12 SiCl «» Si+ Cl
13 SiCl + Cl « SiCl,
14 2HCl < H,+2Cl

nonreactive boundary
reactive boundary

growth position

373 1073 1873 1873 1873 K

Bl [ I 1]

132 124 117 110 1.02 095

Fig. 5. Calculated C-to-Si ratio and temperature and reactive/nonreactive
boundary conditions. Growth conditions are listed in Table I.
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Fig. 6. Concentrations of growing species at growth position as a function of
height from wafer surface. Growth conditions are listed in Table L.
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Fig. 7. Schematic illustration of the boundary layer determined by
computational fluid dynamics.

C. Modeling of a Growing Surface

The surface-reaction rates for SiC CVD based on SiHs and
C3Hg are so fast [28] that R, in trenches can be determined by
the SiCl-diffusion flux as

8f/0t + Ru(0f/ox + offoy + 8f/oz) = 0 and
Rg = [_DSiCleffa(CSiCI I growing surface_CSicle(V))/an]/Vm,

3)
“4)

where f(x, y, z) is a level-set function defined as a function of
the signed distance from the point (x, y, z) to the growing
surface, DsicT is effective SiCl diffusivity determined from
the measured growth rate on a simultaneously grown bare
wafer (i.e., 0.020 pm/min), and » is the vector normal to the
growing surface. Egs. (1)—(4) were solved using technology
computer-aided-design (TCAD) (Victory Process [29]) that use
the high-order nonoscillatory schemes for Hamilton-Jacobi
equations [30].



IIT. TOPOGRAPHY SIMULATION

Figure 8 compares the simulated longitudinal (B-B’ in Fig.
1) and cross (A-A’ in Fig. 1) sections of 3-h grown 4H-SiC
trenches with the experimentally observed ones [3, 7]. In the
case ¥(0°) = 0.03 J/m? (doted curve in Fig. 4), a void defect
appears in the cross section, which does not agree with the
experimental observation. In the case p(0°) = 0.05 J/m? (dashed
curve in Fig. 4), no void defects appear in the cross section;
however, a dip experimentally observed in the longitudinal
section is not reproduced.

In contrast, both an experimentally observed dip in the
longitudinal section and a void-free cross section are
qualitatively reproduced when y(0°) is 0.04 J/m? (solid curve in
Fig. 4).

A-A
section

experimental
observation

¥(0°)=0.03
Jim2
¥(0°)= 0.04
Jim2
¥(0°)= 0.05
Jim2

Fig. 8. Experimentally observed [3, 7] and numerically simulated
longitudinal (B-B’ in Fig. 1) and cross (A-A’ in Fig. 1) sections of 4H-SiC
trenches grown for 3 h under the conditions listed in Table I.

IV. DISCUSSION

While the longitudinal (B-B’ in Fig. 1) section was
qualitatively reproduced with y(0°) of 0.04 J/m?, the cross (A-
A’ in Fig. 1) section was better reproduced with y(0°) of 0.05
J/m? (Fig. 8). Such difference in y(0°) suggests that inclusion
of (0, ¢) should further improve a three-dimensional
reproduction of the experimentally observed topography of
filled 4H-SiC trenches.
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V. SUMMARY

By including a 0 dependence of y in a TCAD topography
simulator, both longitudinal and cross sections of 4H-SiC stripe
trenches filled by subatmospheric CVD were qualitatively
reproduced. Development time for 4H-SiC SJ power devices is
to be reduced by the developed topography simulation
combined with subsequent TCAD-based process and device
simulation.
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