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Abstract— In this work, we present a 2-Valley energy band
model of electron transport that delivers more accurate solutions
compared with the Farahmand model but with improved
convergence and a faster solution time for very high electric fields.
This was achieved by implementing the Fermi-Dirac integral
distribution as a substitution for the Boltzmann exponential,
electron carrier temperature due to heat generation and
conduction in the semiconductor lattice, and additional electron
concentration modeling for a second conduction energy band
minima. The model was primarily tuned by varying the electron
temperature relaxation time constant. It was tested using a GaN-
based High Electron Mobility Transistor using the Finite-Element
Quasi Fermi method.
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L.

In some scaled semiconductor devices and materials, the
electric field can become strong enough to scatter electrons into
higher energy conduction bands. Materials with wide energy
band gap structures such as Gallium Nitride are highly
susceptible to this effect since their applications involve high
electric fields. If the higher energy band has a larger electron
effective mass, this can significantly degrade device response.
Today’s numerical models make use of an empirical relationship
between electron velocity and electric field to try and account
for this scattering. Modeling this is a challenge as there are no a-
priori relationships between velocity and field and this is needed
to further develop numerical solutions.

INTRODUCTION

This issue has been addressed in literature with a few
different approaches. Some have simplified the picture and
assumed a constant mobility and saturation velocity rather than
dealing with a complex expression for mobility that accounts for
scattering effects[1][2]. In situations where it was imperative to
have a highly accurate mobility, complex expressions were used
with limited results due to convergence issues[3]. Others have
tackled these effects using complex mobility models based on
temperature or electric field[4][5], while some have settled for
using the low-field mobility to approximate the behavior[6].

Few have attempted to account for these effects using a
multiband model. S. Vitanov et al. [7] used a two valley
hydrodynamic mobility model to describe high field behavior by
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defining 2 valley-specific mobilities and taking a weighted
mean, with the weighting determined by valley specific
parameters. They obtained acceptable results in comparison to
Monte-Carlo methods. However, their work is more focused on
the modeling of hot-carrier effects on mobility.

To understand these issues, we have explored and
implemented additional phenomena, including the Fermi-Dirac
integral distribution, carrier temperature due to heat generation
and conduction in the semiconductor lattice, and multiple band
energy levels, all of which result in a more physical approach.
These additions were applied and demonstrate an increased
accuracy in computing quasi-Fermi levels, increased likelihood
for convergence, and quicker solution time as compared to
conventional modeling techniques using complex mobility-field
relationships.

II. SIMULATION METHODOLOGY

A. Overview

Steady-state device simulations were carried out using the
FLorida Object Oriented Device Simulator (FLOODS). The
Finite element quasi-Fermi (FEQF) approach was used to solve
partial differential equations for electron and hole quasi-Fermi
level continuity and electrostatic potential[8]. The FEQF
approach was chosen in this situation to allow for the simple
extrapolation of electron concentration in both valleys given one
partial differential equation for the electron quasi-Fermi level.

B. Fermi-Dirac Integral

The Fermi-Dirac (F-D) distribution was added as opposed to
the more commonplace Boltzmann distribution to calculate the
electron concentration from the quasi-Fermi level. The F-D
distribution better captures carrier concentrations when the
quasi-Fermi level is near or above the conduction band edge as
is found in most High Electron Mobility Transistor (HEMT)
devices. The F-D Integral was defined and calculated in a
computationally efficient manner using the short series
approximations laid out by P. Van Halen and D. L. Pulftrey,
which have an error of less than 10-°[9], [10].



C. Heat Generation and Conduction

Next, heat generation and conduction relationships were
implemented to calculate electron temperature fluctuations
independent of the lattice temperature. The carriers and the
lattice are treated as their own thermodynamic subsystems[11].
Modeling carrier thermodynamics in this way allows the thermal
energy of electrons to be more accurately calculated, which
becomes especially relevant in high electric field conditions. Hot
carrier effects resulting from high electron temperatures are the
basis for scattering into upper conduction bands and contribute
to the interesting nonlinear mobility effects in multiband
devices. Electron temperature is used to couple the two valleys
in this approach, as it largely dictates the electron population
distributions. Individual parameters such as the electron
relaxation time were tuned accordingly to best match results
using the Farahmand mobility model as reference.

D. 2-Valley Energy Bands

Under a high electric field, electrons will heat up as they gain
more energy and scatter off the lattice. As electrons’ temperature
increases, they will begin to scatter to higher energy conduction
bands. A strong electric field excites the electrons and can
provide enough energy to scatter them into the upper conduction
bands. In these upper conduction bands, electron transport
properties can change drastically. For GaN in particular,
electron effective mass increases significantly in the upper
bands [12], which results in a reduced drift velocity for those
electrons. In turn, the average drift velocity of the electrons
(accounting for all conduction bands) can decrease as more
electrons are excited into upper bands. To calculate electron
concentrations in the upper bands, the aforementioned Fermi-
Dirac integral distribution, denoted in the equations below as
Fip, with the calculated electron temperature is used to
determine the electron concentrations. The electron energy
relaxation with the lattice allows the carrier to scatter back into
lower energy levels.
¢n_ C
kTelec)

n; = N¢g * Fin(

$n—Ec—AEg
my = Ny Fin(Pr—*
Telec

The second band is differentiated from the first band using a
higher energy level (AE) in addition to the new density of states
in the second band that can be estimated from the change in
effective mass[13]. This two-valley model was implemented
only for the GaN material. The second valley is incorporated in
the partial differential equation for the GaN’s electron quasi-
Fermi level as follows, where n is simply the sum of the two
electron concentrations computed from each energy band:
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as opposed to the typical expression:
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The same Caughey-Thomas lattice temperature-dependent
low field mobility equation was used for the electron mobility in
both bands. Upper-band mobility is scaled using the electron
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effective mass; transport differences are captured from
differences in electron effective mass and electron
concentrations.

Since electron drift is the dominant form of carrier transport
in the HEMT structure used, the 2 valley model was only applied
to the conduction energy bands, and the hole mobility was left
constant.

E. Benchmarking

This modeling approach was compared with the well-
accepted Farahmand Model for electron mobility in GaN. The
Farahmand model of transport dynamics for Ill-nitride
compounds is based on Monte Carlo simulations for major
scattering mechanisms[4]. The Farahmand model’s parameters
are tuned to match experimental data to develop a field
dependent mobility relationship for GaN and other materials.
The Farahmand empirical mobility model can be used to
develop a field-dependent drift velocity model as depicted in
Figure 1.
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Figure 1: Farahmand Empirical model for Electron Drift Velocity

The velocity-field relationship in Figure 1 can lead to
convergence issues in simulations due to the decrease in velocity
with increase in electric field past the peak drift velocity. The
models we used are compared in the following table:

TABLE I. KEY EQUATIONS IMPLEMENTED

Farahmand Model 2-Valley Model

+ Poisson Equation * Poisson Equation

» Electron Continuity * Electron Continuity
Equation Equation

* Hole Continuity * Hole Continuity
Equation Equation

Farahmand field
dependent mobility

Band-dependent
mobility model

model + Fermi-Dirac integral
+ Boltzmann statistics for 2 valleys
distribution * Electron Temperature

thermodynamics

Figure 2 diagrams the test AlGaN/GaN HEMT model of gate
length 1 micron that was used to compare the performance of
the two simulation models. The HEMT is a suitable device to
test these high-field models because it’s designed to handle high
power due to its wide bandgap, regularly reaching high-field
saturation conditions during operation.
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Figure 2a: 2D view of the HEMT test structure

Figure 2b: Vertical cross section of HEMT test structure.

III. RESULTS

In this study, the HEMT drain voltage was swept while
keeping the gate voltage constant at 0V, and the corresponding
drain current was computed using both modeling approaches.

The electron scattering relaxation time pertinent to the 2-
Valley model, 1, was tuned to find a match between the current-
voltage (I-V) characteristics of the two models. As seen in
Figure 3, larger values of 1 cause the current to rolloff (start
decreasing) at a smaller bias voltage while smaller values cause
the opposite to occur. Another general trend observed is for
shorter relaxation times, the curve seems to smoothen out,
achieving better convergence. A value of 2 picoseconds best
matches the Farahmand model; the two I-V curves are compared
in Figure 4. Figure 4 also shows the convergence issue of the
Farahmand model, where the simulation cannot converge past
roughly 2.75V whereas the 2-Valley model converges well past
it at roughly 8V.
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Figure 3: 2-Valley IV curves with varying t
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Figure 4: Matched I-V curves for the Farahmand and 2 Valley models
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As the drain bias increased, the second band’s electron
concentration increased, especially in the channel under the
gate. Notably, some peaking occurred under the gate, especially
at the drain end of the gate where the concentration in both bands
skyrockets. In this bottlenecked region, the concentration in the
second band becomes greater than the first, which correlates
strongly with the decreasing current seen at high bias. The two
conduction band populations evolve as shown in Figure 5.
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Figure 5: Electron Concentration in band 2 wr:t. band | as bias is increased

Since the two-valley model involves solving for an extra
partial differential equation for electron temperature, the
hypothesis was that the two-valley model would show longer
computation time and some possible convergence issues
commonly related to having to solve for an additional partial
differential equation. However, the 2-Valley model showed
steady convergence, up to around 8V, with the chosen relaxation
constant, while the Farahmand model stopped converging at a
drain bias of 2.75V, shown in Figure 4. The solution time at each
bias point was also recorded and tallied up. The 2-Valley model
has an approximately bias independent solution time whereas
the Farahmand model’s solution time increases as the drain bias
is stepped up until it levels off at about 1.8V (Figure 6).
Moreover, the Farahmand model has an exponentially
increasing cumulative solution time, whereas the 2-Valley
model results in a more linear increase in solution time (Figure
7.
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Figure 7: Cumulative solution time

IV. CONCLUSIONS

In conclusion, the 2-Valley model developed delivers similar
results as the Farahmand model but with better convergence and
a faster solution time. This was achieved by modeling the Fermi-
Dirac integral distribution, carrier temperature due to heat
generation and conduction in the semiconductor lattice, and
multiple energy bands. The model was primarily tuned by
varying the electron relaxation time. It was tested on a GaN-
based High Electron Mobility Transistor using the Finite-
Element Quasi Fermi method.
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Future work will include tuning of other thermal transport
related parameters to better capture more of the heat generation
physics and have a more precise model of electron
temperature. It will also be insightful to benchmark the 2-
Valley model against the Farahmand model implemented using
the Scharfetter-Gummel discretization, work that is currently in
progress. The 2-Valley model could also be extended to
modeling other materials beyond GaN or other devices beyond
the HEMT which was tested in this study.
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