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Abstract—We present a simulation approach that is based on 

non-linear finite element method. This simulation flow allows to 
calculate large deformation field and associated stress and strain. 
The obtained simulation result agrees well with analytic solution. 
We extend this simulation method to evaluate the impacts of the 
deformation induced stress on device performance as well as 
structural integrity. 
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I.� INTRODUCTION 
Flexible electronics that can bend are attracting wider 

attention from both academia and industry. In those devices, 
the bending induced effects can bring significant deviation 
from their designed values and may influence their effective 
use in the target application. Therefore, it is critical to 
understand the behavior of devices and circuits under different 
bending conditions. A few articles have reported stress 
induced effects, but most of their modeling approaches are 
based on somewhat simplistic analytical models, which are 
only valid for small deformations [1-3]. Not much has been 
reported in the literature about the analytical models that 
capture the nonlinear relationship between loading force and 
maximum stress. 

The objective of this work is to develop the capacity to 
simulate and predict the device response under various 
bending conditions, which can undergo beyond linear 
deformation regions. This capacity enables us to predict how 
numerous parameters such as the crystal structure of the 
electronic substrate, the design of devices and circuits and 
their layout with respect to various crystal axes, and the 
energy band structure are affected by deformation induced 
stress and strain through variations in electrical parameters. 

II.� SIMULATION METHOD 

A. Prescribed Boundary Conditions 
Flexible devices can experience different types of 

deformations such as tensile, compressive, shearing, bending, 
and torsional. As a general approach to deal with any 
combination of those deformation modes, we apply prescribed 
motions at boundaries. 

To this end, we create rigid surfaces at boundaries such 
that motion of nodal points at the rigid surface follows rigid 
body kinematics: 
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where���� (reference point translation) and ���� (reference 
point rotation) are simulation variables, and 	is 3×3 rotation 
matrix for the given rotation angle. 

The problem of imposing kinematic constraints at the 
boundaries lead to numerical schemes to solve constrained 
systems. 

B. Numerical Treatment of Constraints 
For the discussion that follows, we consider the following 

linear system of algebraic equations resulting from the regular 
finite element discretization [4] 
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where �is the unknown displacement vector, �is the given 
force vector, and � is symmetric positive definite stiffness 
matrix. 

The problem (2) can be obtained as the stationary point of 
the following potential 

���� � �
� ���� � ���                                     (3) 

Our goal is to find �that is the stationary point of ����and 
satisfies the additional linear constraint 
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where ��� accounts for the prescribed boundary condition 
derived from Eq. (1). 

C. The Penalty Method 
Define the penalty functional                                                  
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for a penalty parameter � � �  
We find ��that is the stationary point of �����by taking 

the first variation 
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We obtain 
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The final system consists of the symmetric and positive 
definite stiffness matrix and a single unknown filed, which is 
equivalent to the original system given by Eq. (2). 

The key to the success of the method is the choice of the 
penalty parameter. A small parameter will impose the 
constraint loosely. The higher parameter makes the system 
more ill-conditioned, hence introduce more round-off error. 
Thus the parameter has to be determined in a manner that 
minimizes the sum of round-off error and approximation error. 
According to [5], the optimal parameter in double precision 
arithmetic is given by 
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where Kmin denotes the smallest diagonal component in K.  

III.� LARGE DEFORMATION FORMULATION 

A. Deformation Gradient 
Once the displacement filed is determined by solving the 

aforementioned constrained problem, we can calculate stress 
and strain from the displacements as shown in [6]. 

For the simplest shape finite element composed of a 3-
node  triangular form with displacement parameters at each 
vertex (a 9-degree of freedom element), a linear triangle initial 
positions in the element may be specified using standard 
interpolation as 
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similarly, for the current configuration in lower case by x: 
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If necessary, the displacement vector may be deduced as 

0 � .�0� � .�0� � ./0/                                     (11) 

Furthermore, the natural (area) coordinates satisfy the 
constraint .� � .� � ./ � * So, we can alternatively write the 
initial configuration as  
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Thus we construct the Jacobian transformation for the 
reference frame, which we call J, that contains vectors along 
the edges of the triangle as its columns and this matrix 
describes the mapping from natural coordinates to material 
coordinates. If we wish to go the other way, we will need to 
invert this matrix such that 

5.�
.�

6 � 78��
 � 
/�                                         (13) 

Similarly, for the current frame 
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where j is a matrix made up of vectors along the edges of 
the triangle in current coordinates. Now we can define the 
entire mapping as 
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Taking the derivative of this function with respect to X, the 
deformation gradient is given by 
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B. Deformation Induced Stress/Strain 
In the present work we assume that a simple St.Venant-

Kirchhoff material model may be used to express the stresses 
from the deformations. The second Piola-Kirchhoff stresses 
are thus given by 
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where D are constant elastic moduli and the Green-
Lagrange strains E are given in terms of the deformation 
tensor as 
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Suppose we write our deformation gradient as 
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That is the deformation gradient is the identity (no 
deformation) plus some amount of deformation. Now we can 
rewrite the Green-Lagrange strain as 
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This indicates that the Green-Lagrange strain is 
infinitesimal strain plus quadratic term, which makes the strain 
finite and nonlinear. The linear infinitesimal strain is a good 
approximate for small deformations. Unfortunately, it is not 
invariant to rotations, which leads to artifacts if it is used for 
large deformations such as bending simulation. 

We can see from the definition of traction that stress maps 
normals to forces. Therefore it is important to distinguish 
where these normals and forces are defined. Both normals and 
forces are defined in the reference (undeformed) frame for the 
second Piola-Kirchhoff stress. However, a Cauchy stress, 
where both normals and forces are in the current (deformed) 
frame, is often used in engineering practices. Thus the 
following transformation can be used to get the Cauchy 
stresses 
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A conjugate strain to the Cauchy stress in large 
deformations is Almansi strain, which defined as 
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In terms of the displacement field, it is written as 
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The key here is that the derivatives are with respect to the 
deformed positions, x. 

IV.�VERIFICATION 
For a cantilevered straight beam subjected to a free end 

moment (Fig. 1), the analytic solution can be obtained as in [7] 
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                   Fig. 1. Pure bending of a cantilever beam 

With beam depth h, the maximum fiber stress at the fixed 
end can be also obtained as 
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If we apply prescribed boundary rotations given by Eq. (24) 
on left and right ends of a simple beam with length 2L, we can 
expect that the bending deformation is nearly constant along 
the beam. As a result, the deflection and maximum fiber stress 
of the beam center should be given by Eq. (26) and Eq. (27) 
respectively. The selected properties of the simple beam are: 
L=10, h=2, I=0.67, and E=1010. 

Fig. 2 shows simulation results with deformed mesh and 
stress/strain contour for 50 degree rotations. It is worthwhile to 
mention that the mesh is so nicely deformed that we do not 
need any re-meshing during the large deformation analysis.  

TABLE I presents comparisons between the analytic 
solution and that obtained with FE simulations for various end 
rotation angles, and no significant discrepancies are found. 

 

 

 

                                         

               
                a) deformed mesh 
                 

 

            

                                                                                                                       

                       
              b) Cauchy stress (XX component) 

 

 

                                     

                       
                c) Almansi strain (XX component) 
             Fig. 2. Bending of a simple beam (50 degree end rotations) 

TABLE I. � BEAM DEFLECTION AND FIBER STRESS 

Angle 
(degree) 

Deflection Stress (1e09) 

Exact Sim. Error % Exact Sim. Error % 

10 0.87045 0.86824 0.25 1.74533 1.66168 4.79 

20 1.72768 1.71010 1.01 3.49066 3.35006 4.02 

30 2.55873 2.50000 2.29 5.23599 5.00583 4.39 

40 3.35117 3.21394 3.21 6.98132 6.56258 5.99 

50 4.09335 3.83022 6.42 8.72655 7.96053 8.77 

 

V.� APPLICATION 

A. TFT Bending Simulation 
The newly-developed method is used to accurately model 

a-IGZO TFT on a flexible substrate in order to determine 
structural integrity, performance and reliability, as well as 
predicting structural failures. The target model is composed of 
six different material regions including IGZO/Cr (gate 
metal)/PI stack. Since the critical point in thin film usually 
happens to be the most brittle layer that fails to resist to 
applied bending stress, SiO2 buffer layer between film and PI 
substrate is introduced to resist such stress induced failure. 
The mechanical properties used for this simulation are listed in 
TABLE II.  

TABLE II. � SIMULATION INPUT 

 Young's modulus 
(dyne/cm^2) 

Poisson ratio Thickness (um) 

IGZO 1.37e12 0.36 0.2 

Si3N4 2.5e12 0.23 0.3 

Mo 3.3e12 0.38 0.2 

Cr 2.79e12 0.21 0.2 

SiO2 0.7e12 0.17 buffer 

PI 0.29e12 0.34 10 

 
Fig. 3 shows transfer curve of IGZO thin film transistor in 

compressive stress and in tensile stress case. The inset plot 
shows the electron carrier distribution in tensile stress at the 
front channel (IGZO/gate insulator interface) shorten the 
channel length, which results in increased drain current. Please 
note that the bending radius (or angle of moment) is 
exaggerated and thus the degree of drain current change in 
moderate condition would be small without change of material 
parameters such as band gap or mobility. 

 

Fig 3. Transfer curve in compressive and tensile strain (top right is tensile and 
bottom right is compressive) 

 The following additional observations are obtained: 

���



•� Due to the cracks at the center of TFT. on-current is 
reduced and leakage current is increased. 

•� Buffer layers between film and PI substrate play an 
important role to prevent stress induced failure. 

•� Cracks are initiated around the edge of gate, 
source/drain overlap region and propagated over the 
whole TFT stack. 

B. Device Simulation 
Finally, the resulting deformed geometry and bending 

induced stress are passed over to subsequent device simulation 
to assess their impact on device performance. To this end,  
various end rotation angles (tensile and compressive) are 
applied and results are summarized in Fig. 4 and Fig 5.    

 
 
 

Fig. 4. Geometry and bending stress effects on the current 
 

   We can see that current with tensile strain is larger than 
compressive strain. We believe that this is related to reduced 
effective channel length shown by majority carrier. In a-IGZO 
material, tensile strain increases the inter-atomic distance 
among atoms. It reduces the energy level splitting between 
bonding and anti-bonding. The mobility increase for tensile 
strain can be correlated with a decrease in the electron-lattice 
interaction due to the decreased energy spacing in the 
direction parallel to the current flow. This decreases the 
effective mass of the charge carriers and affects their mobility.  

 

 

Fig.5 Bending effects on capacitance 

 

VI.�CONCLUSION 
A geometric non-linear finite element approach has been 

developed to address ever increasing demand for simulation 
capacity to deal with deformation indued stress on flexible 
electronics. This is achieved by applying arbitrary motion at 
the boundaries including large rotations and translations, 
which makes this approach general without any limitations. 
The proposed capability has been implemented in the Victory 
Process simulation framework [8]. 

Comparisons between simulation result and analytic 
solution show an excellent agreements. We have also shown 
that this scheme can be used to model realistic problems with 
high accuracy, such as the optimization of TFT structure on a 
flexible substrate to determine substrate material and thickness 
that reduce the bending induced stress in brittle layers of the 
device. The device simulation will also help designers to 
understand the electrical behavior through simulated bending 
structure. 

Given the fact that stress and strain accompanied by large 
deformation are usually determined by non-linear FEM 
calculations, we believe that this approach increases the 
predictive power in the design and evaluation steps. 
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