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Abstract—In this paper, we present a parallelized and versa-
tile harmonic balance approach for modeling the small-signal
and large-signal frequency-domain response of the coupled
semiconductor drift-diffusion equations used in TCAD device
simulations. Our approach begins with a time-domain TCAD
code, and we describe the process to adapt the system into the
frequency domain so that the transformation can be parallelized.
Both small-signal and large-signal analyses are easily simultane-
ously incorporated. Furthermore, we introduce the Isofrequency
Remapping Scheme, so that an arbitrary number of high frequen-
cies can be analyzed without introducing a prohibitive expense.
Results obtained by our small-signal and large signal harmonic
balance methods are shown to capture the same response for
a linear device, as expected. Further results use our harmonic
balance method to explore a prohibitively expensive time-domain
problem: a large-signal, two-tone simulation too costly for a time-
domain analysis, for which we are able to produce the expected
response with intermodulation.

Index Terms—TCAD, harmonic balance method, frequency-
domain analysis, frequency mapping method, parallelization

I. INTRODUCTION

Efficient large-signal multi-tone simulation of radio-
frequency (RF) and microwave semicondutor devices requires
the use of a frequency-domain method, e.g., a harmonic
balance (HB) method, to solve the physics-based semicon-
ductor transport equations. The standard HB method [1][2]
for semiconductor devices is often independently implemented
from the time-domain (TD) analysis of the transport equations
in a TCAD code. Furthermore, small-signal and large-signal
frequency-domain (FD) analyses are also typically separated.
This leads to significant redundant effort in simultaneously
supporting TD and FD simulation capabilities. In particular,
any physical model introduced to the TD model needs to be
translated and incorporated into the FD code, and vice-versa.

In this work, we present a versatile multi-tone HB method
such that the frequency-domain model is directly produced
from the TD analysis of the transport equations. We achieve
this by abstracting the assembly of the frequency-domain HB
residual equations so that any formulation of the TD equations

978-1-5386-6790-3/18/$31.00 ©2018 IEEE 271

Gary Hennigan
Sandia National Laboratories
Albuquerque, NM USA
glhenni @sandia.gov

Albuquerque, NM USA
rppawlo @sandia.gov

Albuquerque, NM USA
jmgate @sandia.gov

Mihai Negoita
Sandia National Laboratories
Albuquerque, NM USA
mnegoit@sandia.gov

(including spatial discretization methods and material prop-
erty models) automatically contributes to the corresponding
frequency-domain equivalent via the Fourier transform. We
also note that our method allows us to easily perform a small-
signal linear analysis in addition to the large-signal analysis
with no modification to the code; the abstract assembly cap-
tures the large-signal fully non-linear HB system by default
and be toggled for the small-signal linearization.

The proposed HB method has been implemented in our
MPI-parallel TCAD code, Charon [3]. We remark that our HB
method is not particular to any spatial discretization method,
and can be adapted to other discretization schemes. Charon
was used in this work for comparison of TD simulations with
our frequency-domain HB simulation results.

II. METHOD

For brevity, we outline our HB method only for the electron
drift-diffusion equation. In its entirety, we can solve this
equation coupled to the hole drift-diffusion equation, the
Poisson equation, and/or the lattice temperature equation. We
express the electron drift-diffusion equation by

on

a“”fn(napﬂb):(% (1)

where n(t), p(t), and ¢(t) is the electron density, hole density,
and electric potential, respectively. The quantity F,, represents
the terms that are not explicitly time-dependent. Using a spatial
basis function A(Z) on a spatial discretization element V', we
form a residual equation

[ GA@ i+ R p(0.60) =0 @
1%

Note that the R (¢) term denotes the spatial residual of the
steady-state equation. The term %’t‘ is approximated using
a time discretization method (e.g., backward-Euler) for a
TD transient simulation, or else omitted for a steady-state
simulation. We retain this in the HB method, but transform
it into the frequency domain.



The HB method (in both the small-signal and large-signal
modes) has a solution ansatz whose form depends on the
applied contact voltage frequencies w; Hz, wy Hz, ..., w, Hz,
called the fundamental frequencies of a simulation. Without
loss of generality, we assume that w; < wy < -+ < wy,
and write & = (wy,...,wy) for conciseness. A choice is
made for the degree of intermodulation frequencies to be
captured by the HB method, and the collection of those
intermodulation frequencies is called a truncation scheme.
Truncation schemes T are recorded as integer lattice points
k = (ki,ka,...,k;) € Z' which correspond to a linear
combination @ - k of the fundamental frequencies. Thus, the
HB solution ansatz takes the form

n(#t) = No(@) + 3 [N,g(f) cos (2m3 Et)
EeT 3)
+ N3(#) sin (zmz : /%’t)}

Note that the true solution contains more frequencies than
those fundamental frequencies applied, and the ansatz captures
this [9]. Common truncation schemes interpolate between the
Box and Diamond truncation schemes [1].

To arrive at the HB equations, we first multiply (2) by a
Fourier basis function, i.e., cos(27wd - kt) or sin(27d - kt) for
k € T, and integrate over a period. This results in 2|7 + 1
residual equations, disregarding sin(270t). In the following,
we explicitly describe the procedure involving cos(27w;t)
because all other cases are similar. We next integrate the time-
derivative summand analytically, and the time-independent
summand numerically using a trapezoidal rule (which con-
verges exponentially for periodic functions [10]). Thus, we
obtain the cos(27w;t) HB residual equation:

Ozﬂwi/ N§ (Z)A(Z) dx

4)
+ ZmeA(n(t ) P(tm), ¢(tm))
involving time collocation points and quadrature weights
2 —dom — 0.
tm = m and w] = 27 %0m — ImlL cos(2mw;tm,)
L : 2
where 6,5, = 1 when a = b and 6., = O otherwise, and

L = 2wy by the Nyquist Sampling Theorem.

We note here that the arguments n(t,), p(tm), and @(ty,)
of RQ are evaluated via the ansatz expression (3). For
this evaluation, the small-signal and large-signal formulations
differ slightly: for the small-signal analySIS the summation
is restricted to only k which yields & - k = w;; for the
large-signal analysis, the summation ranges over all keT.
This has the following analytic interpretation: the small-signal
response at the w; frequency is only influenced by the contact
voltage amplitudes at 0 and w; hertz; whereas the large-signal
response at any frequency is influenced by the contact voltage
amplitudes of all frequencies and their intermodulations.

We see that the HB residual equation (4) is assembled by
constructing R2, the steady-state TD model, L + 1 times

n?

and substituting the HB solution ansatz equation (3) into the
TD model. Clearly, any discretization methods and physical
models that are implemented for the TD analysis will be
carried over to the HB residual because they are incorporated
into R2. The parallelization we use to speed up the transform
comes at two stages: we exploit the summations appearing in
the ansatz (3) and the residual (4).

The Nyquist Sampling Theorem recommends a minimum
of 2wy + 1 time collocation points, which is too great for
large frequencies. This makes the transform (4) prohibitively
expensive. To address this, we have developed an efficient
minimal iso-frequency remapping as an alternative to various
frequency mapping methods in the literature [5].

III. ISOFREQUENCY REMAPPING SCHEME

In constructing the HB residual (4), we notice that replacing
w; with a smaller frequency 7; would result in a similar
residual equation. In some cases, this result will be exactly the
same as that obtained by using w;, with the benefit that only
2n;+1 summands are required instead of 2w;+1. However, we
cannot choose an arbitrary set of frequencies without risk of
changing the HB equations because of non-linear interactions.
Ideally, all frequencies & - k& should be replaced by smaller
frequencies while preserving the HB equations.

Frequency remapping schemes have been introduced before.
A two-tone remapping scheme was first introduced in [4]. For
circuit modelling, but also applicable for device modelling,
the two-tone remapping scheme [4] was generalized to a
uniformly-spaced spectral remapping scheme [5]. However,
these schemes may not be appropriate because we require
more than two fundamental frequencies, and the frequencies
may not be uniformly spaced.

An efficient frequency remapping scheme should:

1) Minimize the magnitude of the largest frequency in the
remapped truncation scheme.

2) Faithfully preserve coincident linear combinations of the
fundamental frequencies.

The second property ensures that the remapped system is
equivalent to the original, i.e., preserves Z-dependence.

We emphasize the importance of the second point with an
example. Suppose that (wy,ws) = (1 x 10%,1.2 x 10°). Then
the indices (—5, 5) and (10, 0) both correspond to 10 MHz. In
this case, if 7 includes both of these indices, then we cannot
always use the commonly used two-tone remapping scheme

<1MHz>H< 1 Hz )

1.2 MHz (p+1) Hz

where p is the order of the truncation scheme. This is because
the two-tone remapping assumes all linear combinations k
to correspond to unique harmonics k- @ in particular, if
p # 2, then 5p Hz = (—5,5) - (1 Hz, p + 1 Hz) is not equal
to 10 Hz = (10,0) - (1 Hz,p + 1 Hz). Thus, the two-tone
remapping scheme [4][5] does not preserve the non-linear
interactions of the true HB equations. It is desirable for a
remapping scheme to preserve all non-linear interactions; we
call such a scheme an isofrequency remapping scheme.
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The motivating heuristic for our HB scheme is the obser-
vation that an isofrequency remapping can be realized as the
solution of an integer linear programming problem. Possible
remapping candidates 7 = (11,72,...,7m¢) € Z° for the
remapped frequencies satisfy n; < 1,4 for all 7. Thus, they
form an integer cone C, as depicted in Fig. 1. Furthermore,

3

N2 =13

T2

Fig. 1. Cone of remapping candidates

coincident linear combinations of the fundamental frequencies
& determine linear constraints. In particular, if &, 8 € T such
that &-@ = &-f3, then an isofrequency remapping & +— 77 would
yield 77 - & = 5 - 17, the constraint is determined by requiring
7j - (& — B) = 0. Finally, non-incident linear combinations of
the fundamental frequencies determine half-plane constraints.
In particular, if 4,0 € 7T such that ¥-& > ¢ - &, then we
demand that 77 - (¥ — S’) > 0. Our remapping scheme is thus
the mapping & + 7], where 1 minimizes ||7||¢~ among all
n € C. Our algorithm is summarized in Fig. 2.

An example application of our remapping scheme for an
order p = 10 box truncation yields the map:

1 MHz + 0 Hz 1 Hz
1 MHz+0Hz | — | 26 Hz
1 MHz + 0 Hz 51 Hz

Note that the frequencies of this box truncation scheme are
not equally spaced, and the difference in magnitude between
the intermodulation frequencies are great.

Algorithm 1

1: Determine the annihilators A.
2: Reduce A to a maximal Z-linearly independent set.
3: Determine the cone C' of remapping candidates
4: Define the linear program:
Domain: cone C' of remapping candidates
Unknown: seek n € C
Constraints: require v -1 > 0 for all v € N

5: Solve the linear program for 7 to obtain the map w — 7

Fig. 2. Isofrequency Remapping Algorithm pseudocode

IV. SIMULATION RESULTS AND DISCUSSION

We now show some simulations by our HB method along-
side some transient simulations performed by Charon on a

model symmetric PN diode. In the following, the cathode is
held at OV while a periodic voltage is applied to the anode.

A. Linear responses

The diode has a quasi-linear response for voltages beyond
1 volt. Its current-voltage characteristic curve is shown in Fig.
3.
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Fig. 3. PN diode current-voltage curve.

To compare our HB methods, we performed a transient sim-
ulation with an applied sinusoidal voltage of

(44 2sin(27 -2 - 1)) volts

at the anode, for which the voltage varies completely within
the diode’s linear response regime. We then performed our
large-signal and small-signal HB methods. Plots of all results
are shown in Fig. 4. We clearly see that the linear response is
adequately captured by both of our HB methods.
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Fig. 4. Responses captured by our large-signal and small-signal harmonic
balance methods, transformed into the time domain for comparison with the
time-domain simulation.

B. Non-linear responses

The small-signal analysis assumption is not appropriate for
the diode’s non-linear regime. For low voltages, we compared
our large-signal HB method to the TD method. In Fig. 5, we
show the results of a large-scale HB simulation with

sin(27 - 105 - £) volts

applied to the anode. The rectifying behavior of the diode is
fully captured by our harmonic balance method. The frequency
response spectrum includes more frequencies than the stimulus
1 MHz frequency, though it is the dominant response mode.
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Fig. 5. (a) PN diode cathode harmonic balance and time-domain current
responses from 1 MHz applied voltage. (b) The response spectrum, obtained
by harmonic balance.

C. Multi-tone responses

The advantage of a HB method over a TD method is that
it can capture multi-tone responses accurately, while using
a comparably short simulation time. The TD simulation is
extremely computationally expensive for problems involving
great input frequencies. Our HB method handles an arbitrary
number of tones due to the Isofrequency Remapping Scheme.
To demonstrate our HB method’s multi-tone capability, we
show an example in Fig. 6 of a two-tone simulation with

(sin(27 - 1.0 x 10% - ) +sin(27 - 1.1 x 10° - ¢)) volts

applied to the anode. Note that 0.1 MHz is a non-linear
intermodulation frequency, as it is the difference between
the two applied anode voltage frequencies. In Fig. 6(a), we
clearly see an envelope with this frequency in the time domain
applied anode voltage. The same 0.1 MHz intermodulation
frequency appears in the current response, Fig. 6(b). We
remark that the small oscillations about 0 V are due to a
Gibbs phenomenon, an artifact of the order of the harmonic
balance truncation scheme. These oscillations are reduced
when a higher order truncation scheme is used. The frequency
response spectrum, Fig. 6(c), clearly shows many additional
intermodulation frequencies due to non-linear interactions. For
this problem, our HB simulation took on the order of minutes,
while the TD simulation was expensive so we omitted it.

D. High-frequency stimuli

Note that at frequencies up to 100 MHz, the diode rectifies
the negative half of the sinusoidal input. From 100 MHz
onward, the behavior is more complex - not completely
rectifying nor linear. In Fig. 7, we plot responses obtained
by HB for frequencies in this range. Our results are consistent
with compact models for diodes: a resistor and capacitor in
series. At high frequencies, the capacitor’s complex impedance
drops and the response more resembles that of a linear device.
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Fig. 6. (a) A two-tone applied voltage at the anode, supported at 1.0MHz
and 1.1MHz. Note the 10us window coming from the 0.1MHz envelope. (b)

Large-signal harmonic balance response transformed into the time domain,
depicted over three 10us periods. (c) Frequency response spectrum.

Current amplitude (A/cm)

)

4.2

This contributes to the leading phase shift of the sinusoidal-
like profile in the right panel of Fig. 7.
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Fig. 7. Cathode current responses at 1 GHz and 10 GHz.

V. CONCLUSION

In summary, we have shown that our proposed HB method,
as implemented in Charon, allows us to efficiently construct
the HB residual equations in parallel while utilizing our Isofre-
quency Remapping Scheme. Furthermore, we have described
its versatility and investigated it on a class of linear and non-
linear problems. Because of the remapping scheme, we avoid
the prohibitive expense required by a TD simulation, and we
are able to obtain their frequency response spectra.
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