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Abstract— Negative Bias Temperature Instability (NBTI) stress
and recovery time kinetics from Replacement Metal Gate (RMG)
High-K Metal Gate (HKMG) p-channel FinFETs are measured
and modeled. The impact of channel length (L) scaling on shift in
threshold voltage (AVT), its power-law time exponent (), Voltage
Acceleration Factor (VAF) and Temperature (T) activation (Ea)
is analyzed. TCAD and bandstructure calculations are utilized to
explain the L dependence of experimental data.
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L.

Negative Bias Temperature Instability (NBTI) remains an
important reliability issue in modern p-channel MOSFETs [1].
NBTI causes a gradual buildup of positive charges in the gate
insulator and shifts various device parameters such as threshold
voltage (AVr), subthreshold slope (ASS), trans-conductance
(Agm), drain current (Alp) etc. over time. Modeling of NBTI
time kinetics during and after DC and AC stress is needed to
extrapolate measured AV at short time stress to End of Life
(EOL) at use condition. Although NBTI mechanism is debated
[2], [3], a framework [4] has achieved the same across different
technologies [4]-[8], using uncorrelated contributions from the
interface (AVyr) and bulk (AVor) oxide trap generation as well
as hole trapping (AVwur) in preexisting oxide traps. The model
framework of [4] is shown in Fig.1. In this, the generation and
passivation of traps (ANyr) at Si/IL and IL/High-K interfaces of
HKMG stack are calculated using the Reaction-Diffusion (RD)
model. Transient Trap Occupancy Model (TTOM) calculates
their occupancy and contribution (AVir). Empirical models are
used for AVyr and AVor. Analyses of experimental data by this
framework across technologies [4]-[8] have established that the
AVir subcomponent dominates EOL degradation at operating
conditions. The AVt generation is governed by the breaking of
bonds at the channel/IL interface, Fig.2, where inversion layer
holes tunnel to and get captured in Si-H bonds and make them
weak, the bonds subsequently get broken by thermal process
[9]. The AVir magnitude depends on the gate stack Nitridation
(N%), channel Germanium percentage (Ge%), and other FEOL
processes. The N% in the gate stack and Ge% in the channel
influence the tunneling effective mass (mr), tunneling barrier
(pB); and hence impacts the generation of AVir, as shown in
Fig.2. The impacts of gate stack N% and Ge% in the channel
have been studied in [4]-[8]. Layout related mechanical stress
impact in FDSOI is analyzed in [7]. In this paper, the impact of
channel length (L) scaling on NBTTI is studied and modeled in
RMG based HKMG Si FinFETs by the same NBTI modeling
framework described in [4]. A companion paper [10] models
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the L dependence of RMG SiGe p-FinFETs. To the best of our
knowledge, no modeling is shown till date that quantifies the L
dependence of NBTI magnitude and related parameters.

In this work, measured data at different temperature (T) and
stress bias (Vgstr) are predicted by the comprehensive model
framework of [4] and decomposed into underlying AVir, AVur,
and AVor components, each having their unique time, bias and
T dependencies. The time evolution of AVt kinetics during and
after stress, and the Vgstr and T dependencies of fixed time
AVt are modeled for different L. The calibrated model is used
for EOL projection of AVt and its components for different L.
It is shown that AVt reduces at smaller L, and AVr dominates
AVt for all L. Sentaurus Process [11] is used to simulate the
mechanical Source/Drain (S/D) stress at different L, while tight
binding bandstructure calculations [12] link mechanical stress
to ANyt by using the model of Fig.2 [9]. The RD framework is
incorporated into Sentaurus Device [13], [14] to predict
measured ANjr time kinetics (from AVry) at different Vgstr, T
and L.

II. EXPERIMENTAL

RMG HKMG p-FinFETs from a commercial technology at
14nm node is used. Time evolution of AV is measured using
ultrafast (UF) method with 10us delay. The measurements are
performed at different Vgstr and T and for different channel
lengths (L=160nm, 80nm, 20nm). Sentaurus TCAD is used for
mechanical stress and NBTI kinetics calculations. The impact
of strain on band structure is calculated using [12].

IIT. MODELING OF STRESS AND RECOVERY

Fig.3 and Fig.4, respectively, show the modeling of time
kinetics during and after DC stress. The model subcomponents
and overall prediction for a fixed Vgstr and T (Fig.3 (a) and
Fig.4 (a)), and model prediction for multiple Vgstr and T (Fig.
3 (b) and Fig.4 (b)) are illustrated. AVir shows power law time
dependence with time exponent of ~1/6 for longer-time stress.
During recovery, a fraction of AVir recovers fast by capturing
electrons from the substrate and the remaining AVr recovers
slowly by trap re-passivation [4]. AVyr saturates at long stress
time and recovers fast. AVor has power law time dependence
for stress with exponent ~1/3 and recovers slowly. The model
prediction of time kinetics during and after Mode-B AC stress
is shown in Fig.5 and Fig.6, respectively. The subcomponents
and overall prediction for a fixed Vgstr and T (Fig.5 (a) and
Fig.6 (a)), and prediction for multiple Vgstr and T (Fig.5 (b)
and Fig.6 (b)) are shown. AVyr is negligible; AVir and AVor



show identical time kinetics as DC for Mode-B AC stress. The
recovery after AC stress is delayed since only the slower AVr
(as electron capture happens in the last half cycle before onset
of measurement) and slower AVor components contribute [3].
Fig.7 shows the model prediction of fixed time Mode-B AC
degradation versus duty cycle (Fig.7 (a)) and frequency (Fig.7
(b)); frequency independence is observed.

Such analyses are done for all L. Fig.8 shows the model
prediction of the time kinetics during and after DC stress for
different L at a fixed Vgstr and T. The degradation magnitude
reduces while the time exponent () increases with reduction
in L. Fig.9 through Fig.11 show the model prediction of Vgstr
dependence of fixed time AV for different L. Subcomponents
and overall prediction at a fixed T (left), and overall prediction
at different T (right) are shown. The VAF of AVt increases at
lower L; the VAFs of AVurand AVor are independent of L.
Fig.12 through Fig.14 show the prediction of T dependence of
fixed time AVr for different L. Subcomponents and overall
prediction at a fixed Vgstr (left), as well as overall prediction
at different Vgstr (right) are shown. The T activation of all the
subcomponents is independent of L. The overall AVr reduces,
while its VAF (Fig.9-Fig.11) and Ea (Fig.12-Fig.14) increase
as L is reduced. All subcomponents reduce at scaled L, due to
slight thickening of IL and change of oxide field (Eox); AVir
reduction is larger than others due to mechanical stress impact
as discussed later. The relative AVor contribution increases at
lower L across Vgstr and T, which is evident at shorter time
stress (Fig.15) and EOL under use bias (Fig.16), although the
overall AVr is always dominated by AVir. This increases the
VAF and Ex of overall AVr, as these parameters are higher for
the AVor subcomponent. VAF of AVr also increases with the
reduction in L, as discussed later, and therefore contributes in
increasing the VAF of overall AVt. Higher fractional AVor is
also responsible for higher » of overall AVt at lower L, due to
its higher n (~1/3) than that of AVir (n~1/6). AVt dominates
at different Vggrr and T, unless both Vgstr and T are large
when AVor also equally contributes (due to its high VAF and
EA). As expected for a matured process, AVur is low and has
much less impact for different stress conditions and L.

IV. PHYSICAL MECHANISM

Si/IL interfacial Si-H bond dissociation (ANir creation) is
due to tunneling (mr, @g) and capture of inversion holes into
stretched (due to polarization) covalent bonds and subsequent
T activation [9]. The reaction rate (kr) depends on 4
parameters [4], [9]: pre-factor (kri), T independent oxide field
(Eox) acceleration (I'y), polarization (o) and T activation
(Eakr1), Fig.2. The parameters o and Eakri are independent of
L scaling. Both ket and 'y depend on mr and ¢p and change
with L due to mechanical stress in the channel. TCAD process
simulation is used to quantify the impact of SiGe S/D epitaxial
stressors on mechanical channel stress, and is shown in Fig.17.
Stress profiles at the middle of the fin (surface orientation of
<110>) show that the component along the channel direction
(Stress-ZZ) dominates, which is compressive in nature. Due to
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higher stress near the S/D edges, the compressive stress at the
middle of the fin increases significantly at lower L; see Fig.18.
Bandstructure calculations for <110> surface that corresponds
to fin sidewall orientation suggest an increase in mr along the
perpendicular (tunneling) direction due to increase in uniaxial
compressive stress (UCS) as L is reduced, with no significant
impact on ¢, as shown in Fig.19. Note that this is a feature of
the <110> surface and would impact FinFETs. Planar devices
having <100> surface would be impacted differently [10]. The
mr values obtained in this work are consistent with the values
reported elsewhere [15]. Fig.20 shows the impact of uniaxial
compressive strain on the parameters kerr and T'p. Note, three
orders change in kgt would result in an order change in AVir
[4]; kit reduces and I’y increases with increase in strain (due
to L reduction). Fig.21 compares the krir and T’y for different
L as obtained using theoretical calculations and prediction of
measured data (after component decomposition). Consistency
of theoretical and experimental values is observed. Lower kgt
results in relatively higher reduction in AVir component than
the others as L is scaled.

The RD model is incorporated in Sentaurus Device. Fig.22
through Fig.24 compare the TCAD prediction and measured
stress time kinetics (left) and the Vgstr dependence (right) of
ANir for different L; ANyr is extracted from model prediction
of measured data as discussed above. TCAD can accurately
predict the time kinetics and T dependence of VAF at different
L with only 2 process dependent parameters (ker and T'o) that
are obtained using strain and bandstructure calculations.

V. IMPLICATION

Although this work uses a large variation in L to highlight
the effect, the impact caused by IL scaling would be absent for
changes in L relevant for scaling of core devices. Increase in
stress with L scaling is very drastic at L of interest. Resultant
impact on AVyr would impact the effect of L scaling on EOL
AVr (since AVor at use bias is negligible). Some NBTI relief
is expected due to mechanical stress as L is scaled for <110>
surface dominated FinFETs. However, the impact of L scaling
would be different in planar or GAA nano sheets with <100>
dominated surface, which needs to be investigated.

VI. CONCLUSION

Overall AVt and its underlying subcomponents reduce at
smaller L. Increase in mechanical strain at smaller L reduces
the pre-factor but increases VAF of AVir by increasing the out
of <110> plane tunneling mr, which controls the Si-H bond
dissociation at the fin sidewalls. A slightly higher IL thickness
at smaller L reduces Eox and all underlying subcomponents.
The relative contribution of AVr reduces, while that of AVor
increases and AVyur (negligible) remains constant at lower L,
although AVir dominates overall AVt at low (~ use) Vgsrr for
short time stress and at EOL for all L. Higher relative AVor
(having higher n, VAF and E,) increases n, VAF and E4 of
overall AVt as L is reduced. Higher VAF of AVt at lower L
also contributes in increasing the VAF of overall AVr.
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Fig.2. Schematic of Si-H bond dissociation
at the channel/IL interface. Inversion layer
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the oxide electric field (Eox). The bond is
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Fig.1. Schematic of a comprehensive
NBTI modeling framework consisting
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interface trap generation (AVyr), hole
trapping (AVpyr), and bulk trap
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