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Abstract— A physical framework is used to model time kinetics
of Negative Bias Temperature Instability (NBTI) in Si and SiGe
FDSOI p-MOSFETs and p-FinFETs. The effects of Germanium
(Ge%) in the channel and Nitrogen (N%) in the High-K Metal
Gate (HKMG) gate stack are explained. Mechanical strain effects
in terms of STI to active distance (SA) for FDSOI and channel
length (L) scaling for FinFET are explained. Band structure is
calculated to correlate the process (Ge%, N%, strain) impact on
device degradation. The model is included in Sentaurus Device
TCAD to predict NBTI kinetics in Si and SiGe FinFETs.
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I. INTRODUCTION AND BACKGROUND

Negative Bias Temperature Instability (NBTI) is a serious
reliability concern for p channel FDSOI MOSFET and FinFET
devices [1], [2]. Modeling of threshold voltage shift (AVr) time
kinetics during and after NBTI stress is of importance, as it can
be used to extrapolate the measured data from accelerated short
time DC and/or AC stress to end of life (EOL) at use condition.
Although the physical mechanism is debated [3], [4], the model
of [5] can predict NBTI kinetics over different technologies [5]
-[10]. It uses uncorrelated contributions from interface (AVir)
and bulk (AVor) trap generation and hole trapping (AVur) in
pre-existing traps to calculate overall AVr. It has been used to
predict AVt stress and recovery kinetics during and after DC
and AC stress in Gate First (GF) HKMG planar devices having
different gate stack N% [5], Replacement Metal Gate (RMG)
HKMG SOI FinFETs for wide temperature (T) range [6], and
RMG HKMG Si and SiGe bulk FinFETs having different Ge%
and N% [7], [8]. The Si capped SiGe planar MOSFETSs having
different cap and quantum well (QW) thickness and Ge% in
QW [9], and FDSOI devices with different Ge% and N% [10]
have also been modeled. All of this is achieved by using only 9
technology dependent adjustable model parameters [5].

II. SCOPE OF THIS WORK AND EXPERIMENTAL DETAILS

The framework of [5] is used to analyze NBTI in HKMG
Si and SiGe GF p-FDSOI [10] and RMG p-FinFET [7]
devices with different Ge%, N% and mechanical strain (STI to
active distance for FDSOI, L dependence for FinFET). Fig.1
shows the schematic of the model framework used to model
the AVr kinetics. Reaction-Diffusion (RD) model is used for
interface trap generation (ANir), and Transient Trap
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Occupancy Model (TTOM) is used for charge occupancy of
these traps and their contribution (AVir), and analytical
equations are used for both AVyr and AVor. The model is
validated against experimental data obtained by ultra-fast (UF)
10us delay measurement method. AVir is shown to dominate
EOL AVr at use condition for both FDSOI and FinFET
technologies. Si-H bond dissociation that results in ANjr
generation is modeled using an inversion layer hole and oxide
electric field (Eox) driven process [11], Fig.2, and it depends
on tunneling effective mass (mr), barrier height (¢3),
polarization factor (o), and T activation (Eakr1). The mr and
op values for Si and SiGe 100 (FDSOI) and 110 (FinFET)
surfaces are obtained by band structure calculations using the
tight binding approach [12], with mechanical strain obtained
from measurements for FDSOI and calculated using Sentaurus
Process [13] for FInFET. Sentaurus Device [14] is enabled for
calculating ANir kinetics using RD model. The TCAD based
framework is used to predict the NBTI time kinetics for Si and
SiGe p-FinFETs under different stress bias (Vgstr) and T.

III. MODELING OF NBTI IN FDSOI MOSFET

The framework of Fig.1 is used to study different FDSOI
processes (Table-I) and mechanical strain due to varying SA.
Higher stress is seen for longer SA due to relaxation of strain
near STI, as illustrated in Fig.3. Fig.4 and Fig.5, respectively,
show the modeling of time kinetics during and after DC stress.
The model subcomponents and overall prediction for a fixed
Vestr and T (Fig.4 (a) and Fig.5 (a)), and overall prediction
for multiple Vgstr at a fixed T are shown (Fig.4 (b) and Fig.5
(b)). The AVir shows power law time dependence with time
exponent of ~1/6 during stress. During recovery, a fraction of
AVir recovers fast by capturing electrons from the substrate
and the remaining AVirrecovers slowly by trap re-passivation
[5]. The AVur saturates at long time and recovers fast, while
AVor shows power law time dependence with time exponent
~1/3 and recovers slowly. Fig.6 shows the model prediction
and subcomponents for (a) fixed Vgstr and T, and (b) overall
prediction for different Vgstr at a fixed T during AC stress.
The hole trapping contribution is negligible for AC stress and
explained in [5]. Fig.7 and Fig.8, respectively, show the time
kinetics during and after DC stress for different processes
under two different SA. The degradation reduces as SA is
increased (due to increase in mechanical strain). Fig.9 shows
the measured and modeled AVr at fixed time versus SA for
different Ge% and N% (Processes: P2 to P5) along with



underlying subcomponents. Somewhat higher AVor than AVir
is seen at higher Vgsrr for stress, and AVyr is negligible. Both
AVor and AVyr remain constant for different SA, while AVt
reduces and controls the SA dependence of AVr. Fig.10 shows
the Vgstr dependence of fixed time AVr for processes having
different Ge%. The higher voltage acceleration factor (VAF)
of AVir and relatively higher AVor (VAF for AVor is high [5])
contribution increases the overall VAF for higher Ge%. Fig.11
shows the Vgstr dependence of AVt and the subcomponents
for Si (Process P0) and SiGe (Process P5). AVir dominates the
degradation for lower Vgstr conditions. As VAF is higher for
AVor compared to AViyr (Fig.11), the EOL AVt is dominated
by AVir for all process conditions; refer to Fig.12. Further, the
similarity of stress and recovery kinetics of AVt and the body
coefficient (m) suggest role of ANir, as shown in Fig.13. It is
therefore important to model the process dependence of AVir.

IV. MODELING OF NBTI IN FINFET

Fig.14 and Fig.15, respectively, show the model prediction
of measured time kinetics along with model subcomponent for
lowest dataset during and after DC stress for different Vs
and T. Power law time dependence is seen at longer time with
exponent (n) of ~1/6 and ~1/3 respectively for AVir and AVor,
and AVur is negligible for SiGe devices due to unfavorable
defect band alignment and increase in valence band offset [7],
[15]. The time kinetics during and after AC stress is modeled
in Fig.16 and Fig.17 respectively. Similar analysis is done for
different Ge% and N%. Fig.18 shows the Vgstr dependence
of fixed time AVr at different T for Si and SiGe with different
Ge% and N%. Model subcomponents are shown for the lowest
dataset. AVt reduces but VAF increases with increase in Ge%,
while AVt increases but VAF reduces with increase in N%.
The T dependence of VAF (lower VAF at higher T) is higher
for higher Ge% but lower for higher N%. Higher Ge% in the
channel reduces all subcomponents and hence AVr, while high
N% increases AVir and AVyr but reduces AVor [7]. However,
the increase in AVir is higher than the reduction in AVor, so
the overall AVrincreases with increase in N%. The EOL AVy
is found to be dominated by AVir, as shown in Fig.19, except
for very high Ge% that is not under active consideration. The
AVyr contribution is negligible for all processes. Fig.20 shows
the time evolution of DC stress kinetics for different L in SiGe
devices. The mechanical strain from SiGe (Ge=50%) Source/
Drain (S/D) increases at lower L, which reduces the AVir and
hence AVt as explained below. The Vgstr dependence of AV
is modeled in Fig.21. The VAF increases with reduction in L
(due to increase in strain), similar trend has been shown for Si
FinFETs as explained in a companion paper [16].

V. PHYSICAL MECHANISM

Inversion layer holes tunnel to interfacial Si-H bonds that
are already stretched due to polarization in Eox, get captured
and make them weak, and are subsequently broken by thermal
activation, Fig.2 [11]. The bond dissociation depends on the
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pre-factor (keir), field acceleration (I'e) as well as T activation
energy (Eakri); T'e consists of a T independent factor (I'p) and
its T dependence enters by the polarization term (o) [11]. Both
krir and T’y depend on the valence band (VB) barrier height
(pp) and tunnel effective mass (mr). Band structure (Fig.22)
calculations suggest increase in gz with increase in Ge% while
mr remains almost unchanged for the range of Ge% studied
here, and these hold for both (100) and (110) surfaces. Fig.23
(a) plots the change in ¢p as a function of Ge%, calculated for
Ultra-Thin-Body (UTB) and for (100) surface (FDSOI). As a
consequence, both kgrr and I'p reduce at higher Ge% as shown
respectively in Fig.24 (a) and Fig.25 (a), causing lower AVir.
However, overall I't increases with Ge% due to higher o [7].
Higher o also results in increased T dependence of VAF for
SiGe devices; see Fig.18. Note, higher I't for AVt and higher
(relative) AVor contribution (with higher VAF) increases the
VAF of AVr at higher Ge% across different SiGe technologies
[71-[10]. Higher N% reduces ¢p and mr (from gate leakage
modeling [17]), resulting in higher kgrr (Fig.24 (b)) and AVir,
and is consistent with [18]. N% causes negligible change in T'g
(Fig.25 (b)); the change in VAF with N% is due to the change
in k of the IL (increased k at higher N%), which changes the
IL field [7] (VAF changes while I't does not change).

For (100) surface (FDSOI devices), the top hole (TH) band
lifts up with uniaxial compressive strain (UCS) and increases
@3, see Fig.23 (b). The mr for the TH band increases initially
with UCS but shows no further change at higher values (above
1GPa) [19]. Lower AVir at high SA (Fig.8) is due to the lower
keir (higher g, and higher mr for lower strain values) owing
to higher strain (Fig.9). For (110) surface (sidewall of
FinFETs), the ¢p remains almost unchanged but mr increases
with strain [19] and hence reduces the kgt significantly. Both
increase in ¢p and/or mrresults in a reduction of kgt and an
increase in o, as shown in Fig.26.

VI. TCAD IMPLEMENTATION AND SIMULATIONS

The earlier RD model implementation [20] is enhanced by
proper Si-H bond dissociation mechanism (Fig.2) and density
gradient (quantum corrected) hole density to calculate kinetics
of AVir at the channel/IL and IL/HK interfaces (Fig.27). Band
structure calculated parameters (krir and I'g) are used. TCAD
can predict the stress time kinetics (Fig.28) and fixed time
ANir versus Vgstr at different T (Fig.29) for Si and SiGe p-
FinFETs. Only 2 free parameters are needed for RD model, as
other 2 are obtained from band structure calculations, reducing
the adjustable parameters of full framework (Fig.1) to 7.

VII. CONCLUSION

EOL AVt in Si and SiGe p-FDSOI and p-FinFETs at use
condition is dominated by AVir. Both AVt and AVir reduce at
higher Ge% and compressive strain but increase at higher N%.
Band structure calculations explain the process impact of Si-H
bond dissociation that governs AVir. TCAD implementation
of the framework helps calculation of AVir kinetics using
proper parameters, 3D electrostatics and quantum effects.
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higher VAF and larger T impact of VAF due to polarization (see Fig.2).
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