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Abstract—We study a thermal gradient induced current (𝐼𝑡ℎ)
flow in potassium (K)-doped two-dimensional anisotropic black
phosphorus (BP) with semi-Dirac dispersion. The prototype
device is a BP channel clamped between two contacts maintained
at unequal temperatures. The choice of BP lies in the predicted
efficient thermolectric behaviour. A temperature-induced differ-
ence in the Fermi levels of the two contacts drives the current
(typified by the electro-thermal conductance) which we calculate
using the Landauer transport equation. The current shows an
initial rise when the device is operated at lower temperatures. The
rise stalls at progressively higher temperatures and 𝐼𝑡ℎ acquires
a plateau-like flat profile indicating a competing effect between
a larger number of transmission modes and a corresponding
drop in the Fermi level difference between the contacts. The
current is computed for both n- and p-type BP and the difference
thereof is attributed to the particle-hole asymmetry. We conclude
by pointing out improved thermal behaviour that may arise in
multi-layered BP through topological phase transitions induced
by additional K-doping.

Index Terms—Black phosphorus, Seebeck coefficient, Topolog-
ical transition

I. INTRODUCTION

The miniaturization of circuit components introduces the
problem of localized heating that can give rise to temperature
overshoots and degrade their overall life span necessitating
the need for improved cooling schemes to hold the operating
temperature to reasonable limits. While the generated heat
can be simply removed, a profitable spin-off is to transform
the heat current into electric power taking advantage of the
Seebeck effect. This constitutes the basis for electric-thermal
energy conversion. The optimization of Seebeck-based power
conversion techniques, of late, have received much attention as
newer materials [1], notably graphene, hold promise of better
thermoelectric operation demonstrated by a higher figure of
merit, ZT. Black phosphorus (BP), a layered two-dimensional
(2D) material [2], [3] offers a viable alternative [4]–[6] to
existing thermoelectric materials with a ZT predicted to touch
2.5. This large ZT has been attributed, in part, to the intrinsic
anisotropy [7] of BP. More recently, a highly anisotropic form
of BP was found by Kim et al. ; they showed that a four-
layered BP slab, the armchair (y-axis) direction carried a linear
dispersion while acquiring a parabolic character along the
zigzagged x-axis, effectively a semi-Dirac system. Further,
doping with potassium (𝐾) allowed a tuning and eventual

Fig. 1. The schematic illustrates the suggested arrangement of a BP channel
flanked between left and right contacts maintained at temperatures 𝑇𝐿 > 𝑇𝑅

and electrochemical potentials 𝜇𝐿 and 𝜇𝑅, respectively. The curved lines
denote the smeared Fermi function at a finite temperature. A thermally-
excited electron (hole) current (𝐼𝑡ℎ) flows from the contact at a higher (lower)
temperature. The inset shows the puckered unit cell of a single layer BP. The
channel dimensions (in appropriate units) are 𝐿 and 𝑊 along the x- and
y-axes.

closing of the band gap and a transition from normal to
topological insulating behaviour. We examine a thermally-
driven current (𝐼𝑡ℎ) in semi-Dirac BP that flows on ac-
count of temperature (𝑇 ) gradient created difference in Fermi
distribution (𝑓) at the contacts (Fig. 1). Further, following
the findings of Kim et al. , who uncovered a subsequent
transition from semi-Dirac to linearly dispersing topological
states with enhanced K-doping, carry out a comparison of
the aforementioned thermal currents in prototype linear and
parabolic materials. Primarily, we find that the thermal current
which flows on application of a temperature gradient is highest
in semiconductors which can be grouped as semi-Dirac ma-
terials, followed by gapped graphene-like systems with Dirac
dispersion, and conventional parabolic conduction bands.

II. MATERIALS AND METHODS

A semi-Dirac material [8] is characterized by a set of
parabolic and linear bands along two mutually perpendicular
directions. The minimal Hamiltonian is

ℋ =
(
Δ+ 𝛼𝑘2𝑥

)
𝜏𝑥 + 𝛽𝑘𝑦𝜏𝑦. (1)

In Eq. 1, the coefficient 𝛼 = ℏ
2/2𝑚𝑒 and 𝛽 = ℏ𝑣𝑓 . The Fermi

velocity is 𝑣𝑓 , the effective mass is 𝑚𝑒, and 𝜏𝑥,𝑦 represent the
iso-spin matrices. For a generalized case, we also include a
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Fig. 2. The schematic depiction (left figure) of the dispersion of a semi-Dirac
gapped four-layered BP slab. For the semi-Dirac case, the linear dispersion
is along the y-axis while the x-axis hosts a conventional parabolic band. The
band gap closing (right figure) happens when BP is doped with potassium
(K) and the dopant density reaches a threshold value. The band gap closing
at non points is shown by dotted circles. The dopant (K) induces an electric
field which modulates the band gap. As an illustration of a multi-layered
structure, four BP sheets stacked together along an out-of-plane axis (inter-
layer spacing is 5.3 �̊�) give rise to a semi-Dirac dispersion with a finite gap
adjustable through K-doping. The single-layer BP is actually a double layered
structure and has two P-P bonds. The shorter bond (bond length is 2.22 �̊�)
connects the nearest P atoms in the same plane while the longer bond (2.24 �̊�)
connects atoms located in the top and bottom layers of the unit cell.

band gap (Δ) in conjunction with the parabolic set of bands.
The dispersion is straightforward to obtain, we have

𝐸 (𝑘) = ±
√
(Δ + 𝛼𝑘2𝑥)

2
+ (𝛽𝑘𝑦)

2
. (2)

The + (-) sign in the energy expressions denote the conduction
(valence) state. The dispersion by letting Δ → 0 in Eq. 2
clearly points to mass-less Dirac Fermions along the armchair
direction (y-axis) while the zigzag axis (x-axis) hosts the
conventional ‘massive’ parabolic electron. The band gap in
Eq. 2 is tunable in case of BP through K-doping which
vanishes at a threshold value. The above dispersion relation
which holds true for a four-layered BP (adequately K-doped
such that the band gap vanishes) is plotted in Fig. 2 with
material parameters in the accompanying caption.

The thermal current that flows between the two contacts
is obtained using the Landauer-Büttiker formalism (LBF). [9]
For each spin component (assuming the bands are spin-split
when BP is grown on a ferromagnetic substrate), it is:

𝐼𝑡ℎ =
𝑒

ℎ

∫
ℛ
𝑑𝐸ℳ (𝐸) 𝒯 (𝐸) (𝑓𝐿 (𝐸, 𝑇𝐿)− 𝑓𝑅 (𝐸, 𝑇𝑅)) .

(3)
The transmission probability in Eq. 3, for an electron to
traverse the channel length (the longitudinal dimension) is
𝒯 (𝐸), the function ℳ (𝐸) is the number of modes, and
𝑓𝐿,𝑅 (𝐸, 𝑇𝐿,𝑅) represents the Fermi distribution at the two
contacts. As a first approximation, we set the transmission
to unity assuming the target structure (see Fig. 1) to be
homogeneous throughout. To estimate ℳ (𝐸), as is standard
practice, we assume periodic boundary conditions along the y-
axis such that the 𝑘-channels are equi-spaced by 2𝜋/𝑊 . [10],
[11] Here, 𝑊 is the width (the transverse span along the y-
axis) of the sample. Each unique 𝑘-vector is a distinct mode
and the number of such momentum vectors is determined

from the inequality, −𝑘𝑓 < 𝑘𝑦 < 𝑘𝑓 . The upper and
lower bounds of the inequality are the momentum vectors
that correspond to the Fermi energy, E𝑓 . The approximate
number of modes is therefore 𝑘𝑓𝑊/𝜋. Also, note that the
integral in Eq. 3 must be evaluated over two energy-manifolds,
each in the vicinity of the conduction (𝐸𝑐) and valence band
(𝐸𝑣) extremum. Explicitly, the energy manifold of integration
(Eq. 3) is a simple union of two disjoint intervals given by
ℛ1 : 𝐸 ∈ {−∞, 𝐸𝑣} and ℛ2 : 𝐸 ∈ {𝐸𝑐,∞}. The domain is
then, ℛ = ℛ1 ∪ℛ2. Bearing these in mind, Eq. 3 for thermal
current can be recast as

𝐼𝑡ℎ =
𝑒𝑊

𝜋ℎ

∫
ℛ
𝑔 (𝐸) 𝑑𝐸

∫ 𝜋/2

−𝜋/2

𝑑𝜃 cos 𝜃 (𝑓1 (𝑇1)− 𝑓2 (𝑇2)) .

(4)
The function 𝑔 (𝐸) in Eq. 4 is the analytic representation of
the 𝑘-vector in energy space. Using Eq. 2 and the exchange
field, the function 𝑔 (𝐸) is

𝑔 (𝐸) =

[
1

2𝛼2 cos4 𝜃

(
Ω− (

2𝛼Δcos2 𝜃 + 𝛽2 sin2 𝜃
))]0.5

.

(5)
For brevity, we have used the short-hand notation

Ω =

√(
2𝛼Δcos2 𝜃 + 𝛽2 sin2 𝜃

)2
+ 4 cos4 𝜃 (ℰ2 −Δ2)𝛼2

and ℰ = (𝐸 − 𝜂Δ𝑒𝑥). As a clarifying note, the sum of
modes along the width (𝑊 ) is

∑
𝑘𝑓𝑊/𝜋 Δ𝑘𝑦 which in the

continuum limit changes to
∫ 𝑘𝑓

−𝑘𝑓
𝑑𝑘𝑦 . As usual, the azimuthal

angle is 𝜃 while 𝑘𝑥 = 𝑘 cos 𝜃 and 𝑘𝑦 = 𝑘 sin 𝜃. Note that
the limits of angular integration satisfies the span of a given
𝑘-vector (−𝑘𝑓 < 𝑘𝑦 < 𝑘𝑓 ) or mode. To obtain an estimate
of the thermal current, a numerical integration of Eq. 4 can
be carried out. It is worthwhile to emphasize again on what
we briefly alluded to above: The current in Eq. 4 has two
components - from the conduction band electrons and the
valence band holes - that flow in opposite directions for a
certain potential drop. To further elucidate, when the left
contact (in Fig. 1) is at a higher temperature than its right
counterpart on the right, we define the electron current to
flow from the left and empty in the right contact while the
hole current flows in the exact opposite sense.

The function 𝑔 (𝐸) in Eq. 4 changes representation for linear
and parabolic bands - two material types that we also consider
here. The conventional parabolic (P) is expressed as 𝐸𝑃 =
𝛼𝑘2 + Δ, where 𝛼 = ℏ

2/2𝑚∗ while the linear Dirac (L) is

simply 𝐸𝐿 =

√
(𝛽𝑘)

2
+Δ2. The effective mass is 𝑚∗ and

𝑣𝑓 = 𝛽/ℏ is the Fermi velocity. For completeness, a band gap,
Δ, has been added to both dispersion forms. The function
𝑔 (𝐸) in Eq. 4 for the two cases (P & L) can therefore be
straightforwardly written as:

𝑔𝑃 (𝐸) =

√
1

𝛼
(𝐸 −Δ), (6a)

and

𝑔𝐿 (𝐸) =

√
1

𝛽2
(𝐸2 −Δ2). (6b)
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Fig. 3. The numerically obtained current (𝐼) that flows in a multi-layer BP
sheet clamped between two contacts at dissimilar temperatures (see Fig. 1)
is shown. Mirroring the magnetization-induced asymmetry of the conduction
and hole states, 𝐼 is lower for a p-doped material vis-á-vis an n-type structure.
Note that the temperature (𝑇𝑅) shown along the x-axis is for the left contact;
the left contact is always set to 𝑇𝑅 +Δ𝑇 . Here, Δ𝑇 = 25𝐾.

III. NUMERICAL RESULTS

The preceding formalism allows us to numerically estimate
the quantum of thermal current; to do so, we begin by fixing
the parameters starting with the temperatures of the two
contacts. The temperature is swept between 𝑇 ∈ [150, 350] 𝐾
maintaining a constant difference of Δ𝑇 = 25𝐾 between
the left (hotter) and right contact. The exchange field of the
ferromagnet that breaks the particle-hole symmetry is set to
Δ𝑒𝑥 = 30.0𝑚𝑒𝑉 . As for BP, from previously determined
material constants, the effective mass for the parabolic branch
is 𝑚𝑒𝑓𝑓 = 1.42𝑚0 while the band gap with K-doping is
approximately Δ = 0.36 𝑒𝑉 . The BP band gap is tunable via
the concentration of the K-dopant. [12] The Fermi velocity
for the linear branch is 𝑣𝑓 = 5.6 × 105𝑚𝑠−1. Note that the
out-of-plane magnetization splits the conduction and valence
bands into spin-up and spin-down ensembles; for the selected
material constants, the bottom the conduction spin-up (down)
band is 0.21 (0.15) eV. The corresponding top of the spin-
up (down) valence band is −0.15 (−0.21) 𝑒𝑉 . The Fermi
distribution functions (see Eq. 4) are computed by assigning an
identical electrochemical potential (𝜇) to both contacts; to sim-
ulate n- and p-type character, we toggle 𝜇 between ±0.17 𝑒𝑉 .
In each case, 𝜇 is located between the bottom (top) of the
spin-split conduction (valence) spin-up and spin-down bands.
The current (see Fig. 3) is obtained by a numerical integration
(Eq. 4) considering all possible modes within 65.0𝑚𝑒𝑉 from
the conduction and valence band extremum and a range of
temperatures while holding a constant difference between the
contacts.

We comment on a few noteworthy features of Fig. 3; firstly,
it is immediately recognizable that as the temperature rises,
the thermal current begins to saturate for both n- and p-
type, a behaviour attributable to the diminishing Fermi level
difference (Δ𝜇) with a rise in temperature for a given energy.

Fig. 4. The thermal current behaviour as a function of temperature difference
that exists between the two contacts. The material parameters are identical
to those used in Fig. 3. The two temperatures (𝑇𝑅 = 100, 300𝐾) indicated
on the plot are the starting values for the right contact, the temperature of
the left contact (𝑇𝐿 = 𝑇𝑅 +Δ𝑇 ) is then swept up to enlarge the difference
(shown on the x-axis) with its right counterpart that progressively enhances
the Fermi drop (Δ𝜇) and consequently manifests as a larger thermal current.

At hand though, there also exists a larger smearing of the
Fermi function at a higher temperature opening up additional
modes ((𝑀) in Eq. 4) accessible for transport, however, in
this case, the fall in Δ𝜇 executes the more definitive role. In
the same spirit, for a fixed temperature, the current falls (see
inset, Fig. 3) at higher energies as Δ𝜇 is again lowered for
a pre-determined temperature difference between the contacts.
To offer additional substantiation to this line of reasoning, a
plot (Fig. 4) of the thermal current for several temperatures
differences is distinguished by an increasing behaviour, a fact
that constitutes a simple demonstration of an enlarged Δ𝜇.
This increment to Δ𝜇 translates into a higher current. Notice
that the current (for both doping cases) shown in Fig. 3
receives contribution from four components: They are a pair
consisting of spin-up and spin-down electron components from
the conduction bands and a similar but counteracting hole-
based set originating in the valence bands. When BP is doped
n-type, the position of the Fermi level in the conduction
band guarantees completely (almost, if smearing is accounted)
filled valence bands, a consequence of which is a negligible
hole current. By the same token, for a p-type material, the
conduction states are nearly empty ensuring that bulk of the
current is carried by holes. From an experimental standpoint,
both n- and p-type conduction has been observed [13] in BP
consistent with the narrow band gap that permits tuning of the
Fermi level close to either the valence or conduction band.

For a similar exercise with the parabolic material, the
effective mass is set to 0.0565𝑚0, where 𝑚0 = 9.1×10−31𝑘𝑔
is the free electron mass. In practice, this corresponds to the
transverse mass of conduction electrons located at the 𝐿-valley
of a 6.0𝑛𝑚 wide PbTe thin film, which is modeled as a
quantum well. The choice of PbTe [14], [15] is is motivated by
its wide applicability in the design of thermoelectric devices.
The direct 𝐿-valley band gap (Δ𝑃 ) at such temperatures for
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PbTe can be set [16] to 0.19𝑒𝑉 . The linear counterpart is
chosen to be graphene grown on a substrate that gaps the
Dirac cones at the 𝐾 and 𝐾

′
edges of the Brillouin zone. A

large number of substrates have been investigated that lower
the 𝐶6𝑣 point group symmetry of pristine graphene to 𝐶3𝑣

introducing a band gap and turning it into a semiconductor; the
chief candidates being hexagonal boron nitride (h-BN), silicon
carbide (SiC), and oxides such as Al2O3 and MgO. As a case
in point and which serves our goal well by virtue of a more
accurate comparison between parabolic and linear materials,
graphene grown on Al-terminated Al2O3 surface is predicted
to have a band gap of 0.18 𝑒𝑉 , a number closely aligned to
the 0.19 𝑒𝑉 adopted for representative parabolic PbTe. In light
of this brief note, we set the linear band gap (Δ𝐿) equal to
its parabolic counterpart (Δ = Δ𝐿 = Δ𝑃 ), which is 0.19 𝑒𝑉 .
The current that flows in the setup of Fig. 1 only under a tem-
perature gradient is compared in Fig. 5 for linear and parabolic
materials for a series of externally adjusted temperatures (𝑇𝑅)
of the right contact. The Fermi level for both class of materials
was set to the bottom of the conduction band and an energy
window of 65𝑚𝑒𝑉 was assumed for the numerical integration
of Eq. 4. The temperature difference between the contacts
(𝑇𝐿 − 𝑇𝑅) was fixed to 25𝐾. As for the choice of energy
levels, we adopt the following reference levels: The bottom of
the conduction band (CB) for the parabolic material is identical
to the band gap (Δ), and therefore the top of the valence
band (VB) is zero. The semi-metal graphene (with both CB
and VB equi-energetic at 0 𝑒𝑉 ) when gapped by a substrate
symmetrically splits the CB and VB bands; the bottom of the
CB is located at Δ/2 and top of the VB is pushed down to
-Δ/2.

IV. CONCLUDING REMARKS

We have predicted the quantum of thermally-driven current
in a semi-Dirac multi-layered BP slab held between contacts
at different temperatures. The presented results serve not just
as an illustration of the microscale thermal-to-electric energy
‘harvesting’ paradigm [17] via a Seebeck-like power generator
but also emphasize on the greater efficiency of the semi-
Dirac nature of BP in designing advanced thermal management
schemes enhancing the lifetime and reliability of microchips.
The experimental challenge in constructing such thermal con-
verters lies in controlling the temperature gradient, since the
heat current tends to delocalize over the channel length. Lastly,
notice that the set up described here is essentially a formulation
of the Seebeck phenomenon or the production of thermopower,
which in case of BP, can be modulated through a variety of
means by pursuing the standard route [18] of density-of-states
(DOS) calibration. One such technique involves the application
of an intense light beam [19] and the attendant changes to the
band dispersion and DOS.

Briefly, it is relevant to state here that BP which turns semi-
Dirac with K-doping can undergo a topological phase transi-
tion with increasing dopant concentration through a vanishing
of the band gap. Beyond the band gap ceasing, for a higher

Fig. 5. The numerically calculated thermal current for a fixed temperature
difference (Δ𝑇 ) between the contacts (see Fig. 1) when linear and parabolic
materials are used is shown on the right panel (b). For calculation/numerical
parameters described in the text, the linear material offers a greater quantum
of thermal current in comparison to the parabolic case, attributable to a higher
density of states in the former. Note that the current flows because of a
temperature difference induced inequality in the Fermi level of the contacts.
The numbers on the x-axis indicate the temperature of the right contact (𝑇𝑅);
the left contact temperature (𝑇𝐿) for this plot is therefore 𝑇𝐿 = 𝑇𝑅 +Δ𝑇 .
As further evidence of this point, the inset plot shows current as a function
of (Δ𝑇 ) between the contacts; a higher difference is reflected in a rising
thermal current. Specifically, 𝑇𝑅 = 50𝐾 and 𝑇𝐿 as before is higher by
(Δ𝑇 ). Note that no net current actually flows (unless the circuit is completed
via connectors) and only an open circuit voltage is measured as shown by the
left panel schematic (a). In an open circuit case (vanishing net current), the
initial response to Δ𝑇 is a diffusion current which is exactly counteracted
by a internal drift component set up by an electric field oppositely directed
to the temperature gradient vector.

K-dopant concentration, paves the way for band inversion, a
precursor to topologically protected states; indeed, such states
with massless and anisotropic Dirac fermions [12] have been
observed in BP. A simplified form of the Hamiltonian for the
topological insulator (TI) can be written as

ℋ𝑇𝐼 = ℏ 𝑣𝑥 (𝑘𝑥 − 𝑘𝐷)𝜎𝑥 + ℏ 𝑣𝑦𝑘𝑦𝜎𝑦, (7)

where 𝑣𝑥 and 𝑣𝑦 are the velocities along the x- and y-
axes, respectively at the Dirac point. A Dirac graphene-like
dispersion (Eq. 7)is characterized by a DOS that linearly scales
with ∣𝜖∣ and may therefore exhibit (for a finite energy) a
larger heat capacity in comparison to a semi-Dirac or parabolic
2D nanostructure. It is decidedly an attractive proposition to
observe topological phase transitions via doping and the con-
current advantages [20] that accrue; however, the benefits of
the strong anisotropy of BP, particularly suited for a large 𝑍𝑇
may disappear. A careful set of experimental measurements
may uncover the precise connection between topological phase
transitions and the overall thermoelectric behaviour in semi-
Dirac BP.
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